
Automated Correction for Syntax Errors in Programming Assignments using
Recurrent Neural Networks

Sahil Bhatia SAHILBHATIA.NSIT@GMAIL.COM

Netaji Subhas Institute of Technology, Delhi, India

Rishabh Singh RISIN@MICROSOFT.COM

Microsoft Research, Redmond, WA, USA

Abstract
We present a technique for providing feedback
on syntax errors that uses Recurrent neural net-
works (RNNs) to model syntactically valid to-
ken sequences. Syntax errors constitute one of
the largest classes of errors (34%) in our dataset
of student submissions obtained from a MOOC
course on edX. For a given programming assign-
ment, we first learn an RNN to model all valid to-
ken sequences using the set of syntactically cor-
rect submissions. Then, for a student submis-
sion with syntax errors, we query the learnt RNN
model with the prefix token sequence to predict
token sequences that can fix the error by either re-
placing or inserting the predicted token sequence
at the error location. We evaluate our technique
on over 14, 000 student submissions with syntax
errors.

1. Introduction
With the ever-increasing role of computing, there has been
a tremendous growth in interest in learning programming
and computing skills. The computer science enrollments
in universities has been growing steadily and it is becom-
ing more and more challenging to meet this increasing de-
mand. Recently, several online education initiatives such
as edX, Coursera, and Udacity have started providing Mas-
sive Open Online Courses (MOOCs) to tackle this chal-
lenge of providing quality education at scale that is easily
accessible to students worldwide. One important drawback
of MOOCs is that students typically do not get quality feed-
back for assignments since it is prohibitively expensive to
hire enough instructors and teaching assistants to provide
individual feedback to thousands of students. In this paper,

Appearing in Proceedings of the 2nd Indian Workshop on Ma-
chine Learning, IIT Kanpur, India, 2016. Copyright 2016 by the
author(s).

we address the problem of providing automated feedback
on syntax errors in programming assignments using ma-
chine learning techniques.

The problem of providing feedback on programming as-
signments at scale has seen a lot of interest lately. These
approaches can be categorized into two broad categories –
peer-grading (4) and automated grading techniques (8; 5).
While providing feedback on functional and stylistic el-
ements of student submissions is important, a significant
fraction of submissions (more than 34% in our dataset)
comprise of syntax errors and providing feedback on syn-
tactic errors has largely been unexplored.

In this paper, we present a technique to automatically
provide feedback on student programs with syntax errors
leveraging the large dataset of correct student submissions.
Our hypothesis is that even though there are thousands of
student submissions, the diversity of solution strategies for
a given problem is relatively small and the fixes to syntactic
errors can be learnt from correct submissions. For a given
programming problem, we use the set of student submis-
sions without syntax errors to learn a sequence model of
tokens, which is then used to hypothesize possible fixes to
syntax errors in a student solution. Our system incorpo-
rates the suggested changes to the incorrect program and if
the modified program passes the compiler syntax check, it
provides those changes as possible fixes to the syntax error.
We use a Recurrent Neural Network (RNN) (7) to learn the
token sequence model that can learn large contextual de-
pendencies between tokens.

Our approach is inspired from the recent pioneering work
on learning probabilistic models of source code from a
large repository of code for many different applications (3;
6; 2; 1). Hindle et al. (3) learn an n-gram language model
to capture the repetitiveness present in a code corpora and
show that n-gram models are effective at capturing the lo-
cal regularities. They used this model for suggesting next
tokens that was already quite effective as compared to the
type-based state-of-the-art IDE suggestions. The NATU-



Automated Correction for Syntax Errors in Programming Assignments using Recurrent Neural Networks

RALIZE framework (1) learns an n-gram language model
for learning coding conventions and suggesting changes to
increase the stylistic consistency of the code.

We evaluate the effectiveness of our system on over 14, 000
student submissions from an online introductory program-
ming class. Our system can completely correct the syntax
errors in 31.69% of the submissions and partially correct
the errors in an additional 6.39% of the submissions.

2. Motivating Examples
We now present a few examples of the different types of
syntax errors we encounter in student submissions from
our dataset and the repair corrections our system is able
to generate using the token sequence model learnt from
the syntactically-correct student submissions. The example
corrections are shown in Figure 1 for the student submis-
sions for the recPower problem taken from the Introduc-
tion to Programming MOOC (6.00x) on edX. The recPower
problem asks students to write a recursive Python program
to compute the value of baseexp given a real value base
and an integer value exp as inputs.

A sample of syntax errors and the fixes generated by our al-
gorithm (emphasized in boldface red font) based on differ-
ent code transforamtions is shown in Figure 1. Our syntax
correction algorithm considers two types of parsing errors
in Python programs: i) Syntax errors, and ii) Indentation er-
rors. It uses the offset information provided by the Python
compiler to locate the potential locations for syntax errors,
and then uses the program statements from the beginning
of the function to the error location as the prefix token se-
quence for performing the prediction. However, there are
many cases such as the ones shown in Figure 1(c) where
the compiler is not able to accurately find the exact offset
location for the syntax error. In such cases, our algorithm
ignores the tokens present in the error line and considers
the prefix ending at the previous line. Using the prefix to-
ken sequence, the algorithm uses a neural network to per-
form the prediction of next k tokens that are most likely to
follow the prefix sequence, which are then either inserted at
the error location or are used to replace the original token
sequence at the error location.

3. Approach
An overview of the workflow of our system is shown in
Figure 2. For a given programming problem, we first use
the set of all syntactically correct student submissions to
train a neural network in the training phase for learning a
token sequence model for all valid token sequences that is
specific to the problem. We then use the SYNFIX algo-
rithm to find small corrections to a student submission with
syntax errors using the token sequences predicted from the

learnt model. These corrections are then used for provid-
ing feedback in terms of potential fixes to the syntax errors.
We now describe the two key phases in our workflow: i)
the training phase, and ii) the SYNFIX algorithm.

In the training phase, we provide the token sequences to
the input layer of the RNN and the input token sequence
shifted left by 1 as the target token sequence to the output
layer as shown in Figure 3(a). The figure also shows the
equations to compute the output probabilities for output to-
kens and the weights associated with connections from in-
put to hidden layer, hidden to hidden layer, and hidden to
output layer. After learning the network from the set of
syntactically correct token sequences, we use the model to
predict next token sequences given a prefix of the token se-
quence to the input layer as shown in Figure 3(b). The first
output token is predicted at the output layer using the input
token sequence. For predicting the next output token, the
predicted token is used as the next input token in the input
layer as shown in the figure.

The SYNFIX algorithm, shown in Algorithm. 1, takes as in-
put a program P (with syntax errors) and a token sequence
modelM, and returns either a fixed program P ′ (if possi-
ble) or φ denoting that the program cannot be fixed. The
algorithm first uses a parser to obtain the type of error err
and the token location where the error occurs loc, and com-
putes a prefix of the token sequence T̃prefix corresponding
to the token sequence starting from the beginning of the
program until the error token location loc. We use the no-
tation a[i..j] to denote a subsequence of a sequence a start-
ing at index i (inclusive) and ending at index j (exclusive).
The algorithm then queries the modelM to predict the to-
ken sequence T̃k of a constant length k that is most likely
to follow the prefix token sequence.

After obtaining the token sequence T̃k, the algorithm iter-
atively tries token sequences T̃k[1..i] of increasing lengths
(1 ≤ i ≤ k) until either inserting or replacing the token se-
quence T̃k[1..i] at the error location results in a fixed pro-
gram P ′ with no syntax errors. If the algorithm cannot find
a token sequence that can fix the syntax errors in the pro-
gram P , the algorithm then creates another prefix T̃prefix

of the original token sequence such that it ignores all pre-
vious tokens in the same line as that of the error token lo-
cation. It then predicts another token sequence T̃prev

k using
the model for the new token sequence prefix, and selects a
subsequence T̃prev

k [1..m] that ends at a new line token. Fi-
nally, the algorithm checks if replacing the line containing
the error location with the predicted token sequence results
in no syntax errors. If yes, it returns the fixed program P ′.
Otherwise, the algorithm returns φ denoting that no fix can
be found for the syntax error in P .



Automated Correction for Syntax Errors in Programming Assignments using Recurrent Neural Networks

(a) SyntaxError - Insert Token

def recPower(base, exp):
if exp <= 0:

return 1
return base ∗ recPower(base, exp − 1 )

def recPower(base, exp):
if exp > 1:

return base ∗ recurPower(base, exp−1)
else:

return 1

(b) SyntaxError - Replace Token

def recurPower(base, exp):
total = base
if(exp==0):

return total
else:

total∗=base
return total+recurPower(base,exp− = 11)

def recurPower(base, exp):
if exp = ==0:
return 1;

else:
return base∗recurPower(base,exp−1)

(c) SyntaxError - Previous Line Insert

def recurPower(base, exp):

f exp == 1:
if exp == 1:

return base
return base ∗ recurPower(base, (exp − 1))

def recurPower(base, exp):
if exp == 1:

return base
if exp > 1:

return exp -= 1
return base * recurPower(base, exp-1)

Figure 1. Some examples of the fixes suggested by our system for the recurPower student submissions with syntax errors taken from
edX. The suggestions are emphasized in red using larger font, whereas the modified expressions are emphasized in blue.

SynFix
-----
-----
-----

Syntactically Correct 

Student Submissions

Student Submission 

with Syntax Errors
Feedback

Learnt 

Model

Figure 2. An overview of the workflow of our system.

4. Evaluation
We now present the evaluation of our system on 40, 835
Python submissions taken from the Introduction to Pro-
gramming in Python course on the edX MOOC platform.
Our benchmark set consists of student submissions to five
programming problems recurPower, iterPower, oddTuples,
evalPoly, and compDeriv taken from the edX course.

We first present the overall results of our system in terms
of how many student submissions are corrected using the
predicted tokens in Table 1. Since our algorithm currently
considers only one syntax error in a student submission and
there are many submissions with multiple syntax errors, we

Algorithm 1 SYNFIX

Input: buggy program P , token sequence modelM
(err,loc) := Parse(P ); T̃ := Tokenize(P )
T̃prefix := T̃[1..loc]
T̃k := Predict(M, T̃prefix)
for i ∈ range(1, k) do
P ′ins := Insert(P, loc, T̃k[1..i])

if Parse(P ′ins) = φ return (P ′ins, T̃k[1..i])

P ′repl := Replace(P, loc, T̃k[1..i])

if Parse(P ′repl) = φ return (P ′repl, T̃k[1..i])
end for
T̃prev

prefix := T̃[1..previousline(loc)]

T̃prev
k := Predict(M, T̃prev

prefix)

P ′prev := ReplaceLine(P, line(loc), T̃prev
k [1..m])

where T̃prev
k [m] = \n)

if Parse(P ′prev) = φ return (P ′prev, T̃
prev
k [1..m])

return φ

also report the number of cases where the suggested cor-
rection fixes the first syntax error but the submission isn’t
completely fixed because of other errors. We call this class
of programs as Fixed(Other). In total, our system is able
to provide suggestions to completely fix the syntax error in
31.69% of the cases. Additionally, it is able to fix the first
syntax error on a given error line without fixing other syn-
tax errors on future lines in 6.39% of the cases. The system



Automated Correction for Syntax Errors in Programming Assignments using Recurrent Neural Networks

if exp == 1 :

exp == 1 :

\r\n

\r\n \t

Input Layer

Hidden Layer

Output Layer

if exp ==

1 : \r\n \t

Input Tokens

Predicted Tokens

(a) Training Phase (b) Prediction Phase

Figure 3. The modeling of our syntax repair problem using an RNN with 1 hidden layer. (a) We provide input and output token sequences
in the training phase to learn the weight matrices. (b) In the prediction phase, we provide a token sequence to the input layer of the RNN
and generate the output token sequences using the learnt model.

Problem Incorrect Completely Fixed
Attempts Fixed (Other)

recurPower 2071 1061 (51.23%) 281 (13.57%)
iterPower 2661 1599 (60%) 276 (10.37%)
oddTuples 8824 1575 (17.85%) 303 (3.43%)
evalPoly 324 131 (40.43%) 38 (11.73%)

compDeriv 323 135 (41.79%) 10 (3.09%)
Total 14203 4501 (31.69%) 908 (6.39%)

Table 1. The number of submissions that are completely fixed and
partially fixed (error in another line) by our system using the
LSTM-(2,128) neural network.

isn’t able to provide any fix to the errors for the remain-
ing 61.92% of the submissions. The number of programs
that are completely and partially fixed for each individual
problem is also shown in the table.

5. Limitations and Future Work
There are several limitations in the presented algorithm that
we would like to extend in future work. One limitation of
our technique is that it currently handles only one syntax
error in the student program. We plan to extend our al-
gorithm to also handle multiple syntax errors by automat-
ing the process of fixing the first syntax error found in the
program using the SYNFIX algorithm and then calling the
algorithm again recursively on the next error found in the
updated program. We would like to build a system on top of
our technique that can first distinguish small syntax errors
from deeper misconception errors, and then translate the
suggested repair fix accordingly so that students can learn
the high-level concepts for correctly understanding the lan-
guage syntax.

References
[1] M. Allamanis, E. T. Barr, C. Bird, and C. A. Sutton.

Learning natural coding conventions. In FSE, 2014.

[2] M. Allamanis and C. A. Sutton. Mining source code
repositories at massive scale using language modeling.
In MSR, pages 207–216, 2013.

[3] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. T. De-
vanbu. On the naturalness of software. In ICSE, pages
837–847, 2012.

[4] C. E. Kulkarni, P. W. Wei, H. Le, D. J. hao Chia, K. Pa-
padopoulos, J. Cheng, D. Koller, and S. R. Klemmer.
Peer and self assessment in massive online classes.
TOCHI, 20(6):33, 2013.

[5] A. Nguyen, C. Piech, J. Huang, and L. J. Guibas.
Codewebs: scalable homework search for massive
open online programming courses. In WWW, pages
491–502, 2014.

[6] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N.
Nguyen. A statistical semantic language model for
source code. FSE, 2013.

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
chapter Learning Internal Representations by Error
Propagation, pages 318–362. MIT Press, 1986.

[8] R. Singh, S. Gulwani, and A. Solar-Lezama. Auto-
mated feedback generation for introductory program-
ming assignments. In PLDI, 2013.


	Introduction
	Motivating Examples
	Approach
	Evaluation
	Limitations and Future Work

