
Asynchronous Non-Convex Optimization for Separable Problems

Sandeep Kumar sandkr@iitk.ac.in
Ketan Rajawat ketan@iitk.ac.in

Dept. Of. EE, IIT Kanpur
Kanpur-208016, India

Abstract

This paper considers the distributed opti-
mization of a sum of locally observable, non-
convex functions. The optimization is per-
formed over a multi-agent networked system,
and each local function depends only on a
subset of the variables. An asynchronous and
distributed alternating directions method of
multipliers (ADMM) method that allows the
nodes to defer or skip the computation and
transmission of updates is proposed. The al-
gorithm can tolerate any bounded level of
asynchrony and converges to local minima
under certain regularity conditions.

1. Introduction

Multi-agent networked systems arise in a number of
engineering disciplines such as tactical ad hoc net-
works, environmental monitoring networks, multi-
robot control and tracking, internet-scale monitoring,
and large-scale learning. The estimation, resource al-
location, and network control tasks required in these
applications are often formulated as distributed opti-
mization problems, where each node is associated with
a local cost function, determined from the set of lo-
cal and possibly private measurements (Boyd et al.,
2011). The nodes must nevertheless cooperate in or-
der to minimize the network objective function, which
is the sum of local costs. Practical networks are also
heterogeneous with respect to their processing pow-
ers, energy availability, and communication capabili-
ties, giving rise to asynchrony (Bertsekas & Tsitsiklis,
1989). Indeed, a key feature required of the distributed
algorithms is their tolerance to processing and commu-
nication delays.

In general, distributed optimization algorithms are de-
signed either in the primal (Bertsekas & Tsitsiklis,
1989; Duchi et al., 2012), or dual domain (Boyd et al.,

Appearing in Proceedings of the 2nd Indian Workshop on
Machine Learning, IIT Kanpur, India, 2016. Copyright
2016 by the author(s).

2011; Hong, 2014). A popular dual approach is the
distributed alternating direction method of multipli-
ers (ADMM), where the nodal variables are decou-
pled through the introduction of the consensus con-
straints, and the updates are carried out in the dual
domain (Boyd et al., 2011). High-dimensional prob-
lems are handled through the so-called general-form
consensus formulation, where local updates depend
only on a subset of optimization variables(Boyd et al.,
2011). The ADMM algorithm is also applicable to a
class of non-convex problems, where it has been shown
to converge to a local minimum (Hong, 2014), but are
limited to star topology with a dedicated fusion cen-
ter. The algorithm design becomes challenging in the
absence of a centralized controller or a fusion center,
where nodal interactions are limited to their neighbor-
hoods, and global network state information is largely
unavailable (Kumar et al., 2016; Boyd et al., 2011). In
high-dimensional problems, even local message pass-
ing may be prohibitive, since each node may only be
interested in a subset of the optimization variables.

This work considers the non-convex general-form con-
sensus optimization problem arising in a multi-agent
networked system. The first contribution is the devel-
opment of an asynchronous and distributed ADMM
framework that runs without a fusion center. The al-
gorithm allow the nodes to, at times, skip the compu-
tationally intensive steps and/or the transmission of
updates. As the second contribution, it is shown that
it converges to a local minimum, under certain regular-
ity conditions. The convergence analysis reveals that
with appropriately chosen parameters, the algorithms
can tolerate any bounded level of asynchrony.

2. Problem Formulation

This section details the partially separable non-convex
problem formulation. Consider a network represented
by the undirected graph G = (K, E), where K :=
{1, 2, . . . ,K} denotes the set of agents or nodes and E ,
the set of edges that represent communication links. A
node k ∈ K may only communicate with its neighbors
N ′

k := {j|(j, k) ∈ E}. Consider first the general multi-

Asynchronous Non-Convex Optimization for Separable Problems

�

�

�

�

�

�

�

�

�

�

� �

�

�� �

�� �
�

Figure 1. (a)An example of a four-node network.
(b)Factor graph representation for the objective function
of (2)

agent problem where the nodes want to cooperatively
solve the following optimization problem

min f(x) :=

K∑
k=1

gk(x) + h(x) s. t. x ∈ X (1)

where x ∈ R
N×1, gk : R

N → R for k = 1, . . ., K
are differentiable, possibly non-convex functions, and
h : R

N → R is a convex but not necessarily differ-
entiable function. The set X is closed, convex, and
compact. Within the distributed setting considered
here, the function gk(x) is local to node k, and the
network has no central coordinator or fusion center.

In general, non-convex problems such as 1 are solved in
a distributed manner using the first order gradient or
subgradient descent, dual methods such as ADMM,
convex relaxation (such as semidefinite relaxation),
successive convex optimization, or leveraging the prob-
lem structure. These approaches result in algorithms
that are parallelizable to various extents, with different
computational and message passing requirements. Of
particular interest here is the high-dimensional regime,
where large N prohibits nodes from operating over and
exchanging the full vector x. To this end, the next sec-
tion considers a partially separable form of 1 which is
amenable to a distributed optimization algorithm.

2.1. Partially separable form

Consider a special case of (1) where the optimization
variables {xn}Nn=1 are also partitioned among nodes,
and each variable is of interest to exactly one node.
To this end, let {Sk}Kk=1 denote disjoint subsets such
that the variables {xn|xn ∈ Sk} are local to node k.
Further, the component function gk(·) at node k de-
pends only on variables that are local either to node k
or its neighbors. The overall problem considered here
takes the following form:

P = min
x

K∑
k=1

gk({xn}n∈S′
k
) + hk({xn}n∈Sk

) (2)

s. t. {xn}n∈Sk
∈ Xk k = 1, 2, . . . ,K.

where the set S ′
k :=

⋃
j∈{k}∪N ′

k
Sj . Observe here that

for each node k, the function hk and the constraint
set Xk depend only on the variables in Sk. For this
partially separable form, it is now possible to express
the objective function as a bipartite factor graph, with
check nodes representing the summands gk, and the
variable nodes representing the sets Sk. For the four-
node example network shown in Fig. 1(a), the factor
graph is shown in Fig. 1(b). From the perspective of
algorithm design, the dependence structure imposed
by (2) can be exploited to eliminate message passing
between non-neighboring nodes. The partially sepa-
rable form considered here occurs commonly in the
context of distributed estimation. But, cooperation
between nodes is still required here, since parameters
at neighboring nodes are often coupled or correlated.

3. Distributed Asynchronous ADMM

This section details the proposed distributed asyn-
chronous algorithm for solving (2) via ADMM, and
provides the relevant convergence results. For ease
of exposition, it is assumed henceforth that the sets
Sk are singletons, i.e., Sk = {k}. Note however that
the algorithms and the corresponding convergence re-
sults are applicable to the general case as well. To-
wards this end, introduce copies xkj of the variable
xj corresponding to all nodes j ∈ Nk for all k ∈ K.
To make sure that the copies of the a variable agree
across nodes, also introduce the consensus variable zk
for each neighborhood Nk. The introduction of these
extra variables amounts to reformulating (2) as

min
{xk},z

K∑
k=1

gk({xkj}j∈Nk
) + hk(zk) (3)

s. t. xkj = zj , j ∈ Nk, k = 1, . . . ,K (4)

zk ∈ Xk, k = 1, . . . ,K

where xk collects the variables required at node k, i.e.,
[xk]j = xkj for j ∈ Nk, and zero otherwise. The idea of
introducing consensus variables, in order to make the
updates separable in the optimization variables, is well
known (Boyd et al., 2011). It is now possible to apply
the ADMM method by associating dual variables ykj
for each constraint in (4) and writing the augmented
Lagrangian as

L({xk}, z, {yk} =

K∑
k=1

(
gk(xk) + hk(zk)

+
(∑

j∈Nk

〈ykj , xkj − zj〉+ ρk
2

‖xkj − zj‖2
))

(5)

where ρk > 0 is a positive penalty parameter and z
collects {zk}k∈K. On the left-hand side, for each k,

Asynchronous Non-Convex Optimization for Separable Problems

the dual vector yk ∈ R
N is such that [yk]j = ykj if

j ∈ Nk, and zero otherwise. In particular, starting
with arbitrary {x1

kj} and {y1kj}, the update for {zt+1
j }

are evaluated as

zt+1
j = proxj

⎛
⎝
∑

k∈Nj

(
ρkx

t
kj + ytkj

)
∑

k∈Nj
ρk

⎞
⎠ (6)

where the proximal point function proxj(·) is defined

as proxj := argminu∈Xj h(u) +
1
2 ‖x− u‖2 . Next for

the xk update, observe that since the component func-
tions gk(·) are non-convex, the exact update is difficult
to carry out. By linearizing the function gk(xk) at
zt+1
k , the update xt+1

k can however be calculated ap-
proximately as follows

xt+1
k ≈ argmin

xk

gk(z
t+1
k) + 〈∇gk(z

t+1
k),xk − zt+1

k 〉

+
∑
j∈Nk

〈ytkj , xkj − zt+1
j 〉+

∑
j∈Nk

ρk
2

∥∥xkj − zt+1
j

∥∥2

where the vector [zk]j := zj for all j ∈ Nk and zero
otherwise. Since nodal functions gk(·) depend only on
{xn}n∈Nk

, the gradient vector is defined as

[∇gk(z
t+1
k)]j :=

⎧⎨
⎩

∂
∂xkj

gk(xk)
∣∣∣
xk=zk

j ∈ Nk

0 j /∈ Nk.
(7)

The approximate update of xt+1
kj thus becomes

xt+1
kj = zt+1

j − 1

ρk

(
[∇gk(z

t+1
k)]j + ytkj

)
, j ∈ Nk (8)

Finally, dual updates for 1 ≤ k ≤ K are given by

yt+1
kj = ytkj + ρk{xt+1

kj − zt+1
j }, j ∈ Nk. (9)

The classical proximal ADMM presented here is syn-
chronous and is therefore cannot be readily imple-
mented in a heterogeneous network. For instance, the
computationally intensive steps, namely, calculation of
∇gk(·) in (8) or proxk(·) in (6) are required to be car-
ried out by all nodes at every iteration. In other words,
the network must wait for the slowest node to carry
out its update.

Towards addressing these challenges, we introduce an
algorithm that allow the updates to be skipped or
carried out with an old copy of the gradient vector.
Specifically, it is allowed that the calculation of ∇gk(·)
or proxk(·) be skipped for some iterations. For each
non-updating node this is achieved by simply setting
zt+1
j = ztj j ∈ K at time t. Define St as the set of
nodes that carry out the update at time t, then the
zt+1
j update can be written as

zt+1
j =

⎧⎨
⎩proxj

(∑
k∈Nj

(ρkx
t
kj+yt

kj)
∑

k∈Nj
ρk

)
j ∈ St

ztj j /∈ St

(10)

Whenever j /∈ St, the subsequent transmission may
not be carried out either, and the non-updating node
may simply stay silent. The neighboring nodes will
then wait for a fixed amount of time to receive an
update, and assume that zt+1

j = ztj holds for all nodes
j ∈ Nk that do not transmit anything.

Secondly, the update of xt+1
k can be carried, by using

the latest available gradient ∇gk(z
[t+1]k
k) only, where

t+1−Tk ≤ [t+ 1]k ≤ t+1 for some Tk < ∞. In other
words, the gradient calculation may only be carried
out intermittently, and the same gradient can be used
for next several time slots. Alternatively, for compu-
tationally challenged nodes, the gradient calculation
itself may take several time slots. Dropping the sub-
script k from [t + 1] for notational brevity, the asyn-
chronous update of xt+1

k becomes

xt+1
kj = zt+1

j − 1

ρk

(
[∇gk(z

[t+1]
k)]j + ytkj

)
j ∈ Nk (11)

Algorithm 1 summarizes the implementation of dis-
tributed asynchronous ADMM for networked applica-
tions.
Algorithm 1 Distributed Asynchronous ADMM with
Optional Updates

1: Set t = 1, initialize {x1
kj , y

1
kj , z

1
j } for all j ∈ Nk.

2: for t = 1, 2, . . . do
3: (Optional) Send {ρkxt

kj + ytkj} to neighbors j ∈
Nk

4: if {ρjxt
jk + ytjk} received from all j ∈ Nk then

5: (Optional) Update zt+1
k as in (10) and trans-

mit to each j ∈ Nk

6: end if
7: if zt+1

j not received from some j ∈ Nk then

8: set zt+1
j = ztj

9: end if
10: (Optional) Calculate gradient ∇gk(z

t+1
k)

11: Update the primal variable xt+1
k as in (11)

12: Update the dual variable yt+1
kj as in (9)

13: if
∥∥xt+1

k − xt
k

∥∥ ≤ δ then
14: terminate loop
15: end if
16: end for

3.1. Convergence Analysis for Algorithm 1

In particular, it is shown that the algorithm con-
verges as long as the optional updates happen “often
enough.” Specifically, recall that t + 1 − [t + 1] ≤ Tk,

Asynchronous Non-Convex Optimization for Separable Problems

which implies that the gradients may be calculated us-
ing updates that are at most Tk-old. Similarly, let the
frequency of update in (10) being carried out at node k
be denoted by 0 < fk ≤ 1. For instance, if the update
occurs once every K time slots, fk = 1/K. Then the
following assumptions are required.

Assumption A1. For each node k, the component
function gradient ∇gk(x) is Lipschitz continuous, that
is, there exists Lk > 0, for all x,x′ ∈ domgk such that

‖∇gk(x)−∇gk(x
′)‖ ≤ Lk ‖x− x′‖ . (12)

Assumption A2. The set X is a closed, convex, and
compact. The functions gk(x) is bounded from below
over X .

Assumption A3. For node k, the step size ρk is cho-
sen large enough such that, it holds that αk > 0 and
βk > 0, where

αk :=
ρkfk
2

−
(
7Lk

2ρ2k
+

1

ρk

)
|Nk|L2

k(Tk + 1)2 − |Nk|LkT
2
k

2

βk := ρk − 7Lk (13)

Of these, Assumptions (A1) and (A2) are standard in
the context of non-convex optimization (Hong, 2014;
Boyd et al., 2011) and are satisfied for most problems
of interest. Finally, Assumption (A3) specifies the ex-
act relationship that the algorithm and problem pa-
rameters {Lk, ρk, fk, Tk}Kk=1 must satisfy in the worst
case.

Lemma 1. (a) Starting from any time t = t0, there
exists T < ∞ such that

L({xT+t0
k }; zT+t0 , {yT+t0

k })− L({xt0
k }; zt0 , {yt0

k })

≤ −
T+t0−1∑
i=t0

K∑
k=1

βk

2

∑
j∈Nk

‖xi+1
kj − xi

kj‖2

−
T+t0∑
i=t0

K∑
k=1

αk

∑
j∈Nk

‖zi+1
j − zij‖2. (14)

(b) The augmented Lagrangian values in (5) are
bounded from below, i.e., for any time t ≥ 1, it
holds that Lagrangian satisfies

L({xt
k}; zt, {yt

k}) ≥ P− Lk

2

∑
j∈Nk

diam2(X) > −∞
Lemma 1(a) establishes that there exists some finite T
such that the augmented Lagrangian values are non-
increasing after T iterations. In practice, the value
of T depends on the update frequencies {fk}Kk=1. For
instance, T could be the minimum number of itera-
tions in which each node k updates ztk at least fkT
times. Lemma 1(b) establishes that the Lagrangian is
bounded from below.

Theorem 1. (a) The iterates generated by Algo-
rithm 1 converges in the following sense

lim
t→∞

∥∥zt+1
k − ztk

∥∥ = 0, ∀ k (15a)

lim
t→∞

∥∥∥xt+1
kj − xt

kj

∥∥∥ = 0, j ∈ Nk, ∀ k (15b)

lim
t→∞

∥∥∥yt+1
kj − ytkj

∥∥∥ = 0, j ∈ Nk, ∀ k (15c)

(b) For each k ∈ K and j ∈ Nk, denote limit points of
the sequences {ztk}, {xt

kj}, and {ytkj} by z�k, x
�
kj,

and y�kj, respectively. Then {{z�k}, {x�
kj}, {y�kj}}

is a stationary point of (3) and satisfies

∇gk(x
�
k) + y�

k = 0, k = 1, . . . ,K (16a)∑
j∈Nk

y�jk ∈ ∂(hk(z)) |z=z�
k

k = 1, . . . ,K (16b)

x�
kj = z�j ∈ Xj , j ∈ Nk, k = 1, . . . ,K (16c)

Note that it suffices to show that Algorithm 1 con-
verges to a stationary solution of (3) which is equiv-
alent to (2). In other words, {z�k}Kk=1 can be used as
a solution to (2). It is emphasized that Algorithm 1
may not necessarily converge to a globally optimum
solution to (2). The proof of the theorem with de-
tailed analysis of the non-convex ADMM framework
is deferred to the longer version (Kumar et al., 2016).

Dual submission

The detailed manuscript of this work, is under review
for the publication in, IEEE Transactions on Signal
and Information Processing over Networks.

References

Bertsekas, Dimitri P and Tsitsiklis, John N. Parallel and
distributed computation: numerical methods, volume 23.
Prentice hall Englewood Cliffs, NJ, 1989.

Boyd, Stephen, Parikh, Neal, Chu, Eric, Peleato, Borja,
and Eckstein, Jonathan. Distributed optimization and
statistical learning via the alternating direction method
of multipliers. Found. Trend. Mach. Learn., 3(1):1–122,
2011.

Duchi, John C, Agarwal, Alekh, and Wainwright, Mar-
tin J. Dual averaging for distributed optimization: con-
vergence analysis and network scaling. IEEE Trans. on
Automatic control,, 57(3):592–606, 2012.

Hong, Mingyi. A distributed, asynchronous and incremen-
tal algorithm for nonconvex optimization: An ADMM
based approach. arXiv preprint arXiv:1412.6058, 2014.

Kumar, Sandeep, Jain, Rahul, and Rajawat, Ketan. Asyn-
chronous optimization over heterogeneous networks via
consensus admm. arXiv preprint, 2016. URL http:
//arxiv.org/pdf/1605.00076v1.pdf.

