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Abstract

The choice of the loss function is critical in
extreme multi-label learning where the ob-
jective is to annotate each data point with
the most relevant subset of labels from an ex-
tremely large label set. Unfortunately, ex-
isting loss functions, such as the Hamming
loss, are unsuitable for learning, model se-
lection, hyperparameter tuning and perfor-
mance evaluation. This paper addresses the
issue by developing propensity scored losses
which: (a) prioritize predicting the few rel-
evant labels over the millions of irrelevant
ones; (b) do not erroneously treat missing
labels as irrelevant; and (c) promote the ac-
curate prediction of hard to predict, but re-
warding tail labels. Another contribution
is the development of algorithms which effi-
ciently scale to extremely large datasets with
up to 9 million labels, 70 million points and 2
million dimensions and which give significant
improvements over the state-of-the-art. We
also demonstrate that the proposed contribu-
tions achieve superior clickthrough rates on
sponsored search ranking problems in Bing.

1. Introduction

Extreme multi-label learning (XML) addresses the
problem of learning a classifier that can annotate a
data point with the most relevant subset of labels
from an extremely large label set. XML is an im-
portant research problem because many applications
like tagging, recommendation and ranking can natu-

Preliminary work. Under review by the Indian Workshop
on Machine Learning (iWML). Do not distribute.

rally be reformulated as XML tasks. For example in
e-retailing, each product can be treated as a separate
label, followed by learning an XML classifier that maps
a user’s feature vector to a set of relevant labels (prod-
ucts), and then using the classifier to predict the subset
of products that a new user might like to purchase.

The choice of an appropriate loss function is critical
to ensure successful training, hyper-parameter tun-
ing, model selection and performance evaluation in an
XML task. Traditional multi-label loss functions like
Hamming loss are rendered unsuitable when applied
to XML tasks due to following reasons: First, data
points in an XML task naturally have many missing
labels in their ground truth since it is impossible to
accurately judge each instance against millions of la-
bels. Traditional loss functions erroneously treat the
missing labels as irrelevant. Second, they do not pri-
oritize predicting the few relevant labels over the mil-
lions of irrelevant ones. Furthermore, the infrequently
occurring tail labels are often more informative and re-
warding while being harder to predict than frequently
occurring ones. Traditional loss functions treats all
relevant labels as being equally important.

The primary contribution of this paper is to develop
loss functions suitable for extreme multi-label learn-
ing. Propensity scored variants of ranking losses like
precision@k and nDCG@k, are developed and proved
to give unbiased estimates of the true loss function
even when ground truth labels go missing under arbi-
trary probabilistic label noise models. This is shown to
naturally promote more rewarding tail labels. Another
contribution is the development of an efficient extreme
multi-label algorithm that can scale to extremely large
datasets with up to 9 million labels, 70 million training
points and 2 million dimensional features and achieves
significant improvements over the state-of-the-art.
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2. Related Work

Although some algorithms have been proposed for
training with missing labels (Yu et al., 2014; Kong
et al., 2014) under restrictive settings, aspects such
as hyper-parameter tuning, model selection and per-
formance evaluation have not been addressed be-
fore. As such, the Hamming loss (Karampatziakis &
Mineiro, 2015) continues to be one of the most popu-
lar losses for extreme multi-label learning along with
precision (Prabhu & Varma, 2014; Karampatziakis &
Mineiro, 2015) and the F-measure (Karampatziakis &
Mineiro, 2015). On the other hand, unbiased estima-
tors for recall (Steck, 2010) and average discounted
gain have been developed under the restrictive as-
sumption that labels go missing uniformly at random
from the ground truth. By contrast, this paper devel-
ops propensity scored variants of precision, nDCG and
other loss functions and proves that they are unbiased
even under general probabilistic label noise models.

Propensity scoring has been used to develop unbiased
estimators for observational data (Rosenbaum & Ru-
bin, 1983).

Heuristical label (item) weighting loss functions have
been proposed to promote the accurate prediction of
infrequently occurring labels (rare items) which might
delight and surprise the user (Vargas & Castells,
2011). This paper provides theoretical justification for
such heuristics by showing how similar weights can
arise from the proposed propensity models.

3. Propensity Scored Losses

This Section develops propensity scored variants of
precision@k, nDCG@k and other popular loss func-
tions, which are computed on the observed labels and
provide unbiased estimates of the true loss function
computed on the complete (but unobtainable) ground
truth without any missing labels.

Let y∗,y ∈ {0, 1}L denote the complete (but un-
obtainable) and observed (but with missing labels)
ground truth label vectors for a given data point
such that y∗l = yl = 1 for observed relevant labels,
y∗l = 1, yl = 0 for unobserved relevant labels and
y∗l = yl = 0 for irrelevant labels.

Let pil ≡ P (yil = 1|y∗il = 1) denote the propensity,
that is the marginal probability of a relevant label l
being observed for a data point i.

Let L∗(y∗, ŷ) =
∑L

l=1 L∗l (y∗l , ŷl) =
∑L

l:y∗
l =1 L∗l (1, ŷl)

denote the family of loss functions which decompose
over individual labels l and are computed over the
relevant labels alone ({l|y∗l = 1}). L∗ represents

the true loss function measuring the loss incurred for
predicting ŷ when the complete ground truth vector
was y∗. The propensity scored variant of L∗ com-
puted on the observed ground truth y is defined to be
L(y, ŷ) =

∑L
l:yl=1 Ll(1, ŷl) =

∑L
l:yl=1 L∗l (1, ŷl)/pl.

Then the following theorem implies that L can be a
viable proxy for L∗ for training, model selection, hy-
perparameter tuning and performance evaluation.

Theorem 3.1. The loss function L(y, ŷ) evaluated on
the observed ground truth y is an unbiased estimator of
the true loss function L∗(y∗, ŷ) evaluated on complete
ground truth y∗. Thus, Ey[L(y, ŷ)] = Ey∗ [L∗(y∗, ŷ)],
for any P (y∗) and P (y) related through propensities
pl and any fixed ŷ.

Proof. For proof, please refer to full version.

4. Propensity Model

Section 3 requires that the marginal propensities of la-
bels being retained is known. Unfortunately, propen-
sities are generally unknown as y∗ is unavailable due
to the large label space. Based on empirical observa-
tion, this Section proposes that the propensities can
be modelled as a sigmoidal function of logNl

pl ≡ P (yl = 1|y∗l = 1) =
1

1 + Ce−A log(Nl+B)
(1)

where Nl is the number of data points annotated with
label l in the observed ground truth dataset of size
N and A,B,C are model parameters. In particular,
propensities are estimated on Wikipedia and Amazon
where meta-data is available for the task and shown
to give a close fit to (1) (see Figure 1).

For the empirical estimation of propensities, we make
use of the category hierarchy and ”items viewed to-
gether” information, respectively, in Wikipedia and
Amazon datasets. For more details, please refer to
full version.

5. Algorithms

This Section develops the PfastreXML algorithm
for extreme multi-label learning. PfastreXML
optimizes propensity scored nDCG by leveraging
FastXML (Prabhu & Varma, 2014) for nDCG opti-
mization. PfastreXML then further extends FastXML
to improve the tail label prediction which is the most
challenging aspect of extreme multi-label learning.
PfastreXML makes key approximations which increase
FastXML’s training time by just seconds while retain-
ing the prediction accuracy gains of the extension.
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Figure 1. Propensities pl and their corresponding weights wl = 1/pl on Wikipedia and Amazon. The estimated propen-
sities follow a sigmoidal curve on the semi-log plot and provide a principled setting of the weights for recommending rare
items as compared to popular heuristics such as N−β

l and log(N/Nl).

5.1. Propensity scored FastXML

Propensity scored FastXML (PfastXML) shares the
same architecture as FastXML (Prabhu & Varma,
2014) which learns an ensemble of trees during train-
ing. PfastXML improves upon FastXML by replac-
ing the nDCG loss with its propensity scored variant
which is unbiased and assigns higher rewards for accu-
rate tail label predictions. In particular, PfastreXML
replaces LnDCG@L in (Prabhu & Varma, 2014) by

LPSnDCG@L(r,y) = −
∑
l

yl
pl log(rl+1)∑L
l=1

1
log(1+l)

FastXML’s objective function can be recovered from
PfastXML’s by substituting ypil = yil/pil, and can
therefore be optimized FastXML’s iterative alternat-
ing optimization applied to ypil.

PfastXML enjoys all the scaling properties of
FastXML, while improving prediction accuracy.

5.2. PfastreXML

Propensity scoring improves FastXML but tree classi-
fiers are still prone to predicting tail labels with low
probabilities. PfastreXML addresses this limitation by
re-ranking PfastXML’s predictions using classifiers de-
signed specifically for tail labels.

Each tail label has little training data which is limited
to certain regions of feature space. Compact hyper-
spherical decision boundaries are therefore learnt for
each tail label independently according to:

P (y∗il|xi) = 1/(1 + v
2y∗
il−1

il ) (2)

where vil = e
γ
2 ‖xi−µl‖22

For optimizing the above objective, instead of a slower
gradient descent based approach, we propose a very
fast and approximate solution. Assuming that the rel-
evant labels lie within a very tight cluster leads to
uil ≈ yil yielding

µ∗
l =

∑N
i=1 yilxi∑N
i=1 yil

(3)

Thus, each µ∗
l turns out to be the sparse mean of the

training points for which the label was observed to be
relevant.

Re-ranking: The final ranked list of labels, restricted
to the label set predicted by PfastXML, is obtained by
sorting the weighted average of probability scores from
PfastXML and 2 obtained as follows:

sl = α logPpf(y
∗
l = 1|x) + (1− α) logP (y∗l = 1|x)

(4)

6. Experiments

Experiments were carried out on the largest bench-
mark datasets demonstrating that PfastreXML could
achieve significantly higher prediction accuracies ac-
cording to the unbiased propensity scored loss func-
tions as compared to the state-of-the-art.

Datasets: We used several extreme multi-label
datasets including Ads-9M, WikiLSHTC-325K,
Amazon-670K, EUR-Lex and a few others.

Baseline algorithms: Our baselines include
FastXML (Prabhu & Varma, 2014) and SLEEC (Bha-
tia et al., 2015) which are the leading tree and embed-
ding based approaches respectively. Other baseline al-
gorithms include 1-vs-All, LEML, WSABIE, CPLST,
CS, ML-CSSP, LPSR, and a popularity baseline. For
references to these datasets and baselines, click here.

Evaluation metrics: Performance is evaluated us-
ing the unbiased propensity scored Precision@k and
nDCG@k, normalized to lie between {0, 1}.

Results: Table 5 compares PfastreXML’s perfor-
mance to that of state-of-the-art SLEEC, FastXML
and other baseline algorithms using unbiased preci-
sion. Most of the baseline algorithms do not scale to
large datasets and hence their corresponding results
are missing. As can be seen, the proposed PfastXML
and PfastreXML lead to significantly better prediction
accuracies as compared to the state-of-the-art.
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Table 1. The proposed PfastreXML and PfastXML algo-
rithms make significantly more accurate predictions as
compared to state-of-the-art SLEEC, FastXML and other
baseline algorithms. Performance is evaluated according
to the unbiased propensity scored Precision@k (PK) and
nDCG@k (Nk) for k = 1, 3 and 5.

PfastreXML also improves upon PfastXML’s predic-
tion accuracy with negligible training and prediction
overhead (∼ 18 min, and 0.13 ms, respectively, on Ads-
9M).

PfastreXML’s query rankings were also used to serve
ads on the Bing search engine, and was observed to
give an improvement of significantly more than 5% in
the clickthrough rate over the existing system. This
helps verify that the propensity scored loss functions
and proposed algorithm align with the requirements of
real world applications.

7. Conclusions

This paper developed loss functions suitable for ex-
treme multi-label learning and long tail, missing la-

bel applications such as ranking, recommendation and
tagging. Propensity scored variants of precision and
nDCG were developed and proved to give unbiased
estimates of the true loss function evaluated on the
complete ground truth, as well as promote the accu-
rate prediction of tail labels.

We also developed the PfastreXML algorithm for op-
timizing propensity scored nDCG. PfastreXML was
shown to make significantly more accurate predic-
tions on all datasets as compared to state-of-the-art
XML classifiers, and achieve significantly higher click-
through rates for sponsored search advertising on Bing
as compared to the existing system.

Dual Submissions

This work is currently under submission to 22nd ACM
SIGKDD Conference, to be held in San Francisco, Cal-
ifornia in Aug-2016. To read the full version submit-
ted to KDD, click here.To visit the conference website,
click here.
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