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Abstract

Quantitative dermatopathology is being
widely employed in clinical practices for pre-
cise detection of various skin conditions.
Dermatoscopes are placed in contact with
the skin for visual observation and this
(a) risks cross-contamination between inves-
tigated subjects and (b) limits instrument
use when investigating infectious lesions and
wounds. This paper presents a framework
for quantitative dermatopathology using con-
sumer grade camera for contact free imaging
of skin conditions. Inductive transfer learn-
ing of tissue-photon-interaction (TPI) statis-
tical physics modeled for 11 skin conditions
estimates TPI as a spatially localized pois-
son process of photons sensed by the RGB
sensors, and utilizes this knowledge to detect
skin condition. Inter-camera and illumina-
tion variations are compensated by includ-
ing a maximum likelihood estimation (MLE)
based photon density normalization across
all images in the dataset. 8-folded cross-
validation experiments over a dataset of 440
images of 11 skin conditions provided the
condition identification accuracy of 94.55 ±
5.05% within the top-3 predictions.

1. Introduction

Skin diseases have been globally reported to have over
1, 000 clinical conditions, ranging across benign like
acne to the malignant ones like basal cell carcinoma.
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Dermatoscope is an assembly of a magnifier, illumi-
nation source, a transparent plate and a transparent
insulation between the instrument and the skin which
is used by clinicians for detailed investigation of a
wide variety of skin lesions. Being placed directly on
the skin of patients, dermatoscopes may harbour po-
tentially pathogenic bacteria. Alternative current ap-
proaches employ consumer grade cameras which pro-
vide the opportunity of contact-free imaging ruling out
the risks of cross-contamination.

In recent years, there has been an increased demand
for an automatic system capable of recognizing the
skin disease. An effective computer aided diagnosing
system not only helps patients with no or little access
to health services but also benefits typical GPs who
have received minimal dermatology training.

Quantitative dermatopathology is one such system of
using computational techniques for analyzing derma-
tological images for precision diagnosis. These sys-
tems utilize methods contributed to the use of either
digital dermatoscopy or consumer-grade camera im-
ages under uncontrolled illumination conditions such
as: learning based analysis with human-in-loop fea-
ture extraction (Razeghi et al., 2013). Automatic
classification of skin conditions has not been exten-
sively explored to our knowledge. The conventional
approaches generally account to identifying benign vs.
malignant (Ganster et al., 2001) but not skin condi-
tion (Razeghi et al., 2013), which is an evident clin-
ical challenge and is solved in this paper. The prior
art is limited to (i) human-in-loop free skin condition
identification, (ii) imaging device and illumination in-
dependent functioning, (iii) pixel level lesion identi-
fication in the skin condition images. The challenge
lies in robustly classifying skin conditions with con-
sumer graded camera imaging, hence leveraging the
potential of computer aided-diagnosis. Our method
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(a) Acne (b) Bcc (c) H.Hailey (d) Impet.

(e) Lich. pl. (f) Melan. (g) Nevus (h) P.vl.

(i) Psoriasis (j) Scc (k) Vitil.

Figure 1. Example images of the 11 skin conditions consid-
ered for quantitative dermatopathology.

employs statistical physics model for transfer learning
of tissue-photon-interaction to segregate 11 skin dis-
orders. Theortical and experimental studies (Healey
& Kondepudy, 1994) well establishes the poisson dis-
tribution of photon sensing using standard CCD or
CMOS digital sensors. The flow of our solution us-
ing transfer learning framework (Pan & Yang, 1994) is
exposed as, (i) subjects imaging with consumer grade
cameras under uncontrolled illumination (ii) normal-
izing the photon densities across images (iii) model-
ing the statistical physics of tissue-photon-interaction
(TPI), (iv) transfer learning of TPI for identification of
lesions at pixel precision, and (v) classification of the
subject image among the 11 skin conditions(Fig. 1).

2. Problem Statement

Let I be an RGB image of the skin acquired by a con-
sumer grade camera under natural illumination. Every
pixel at coordinate (x, y) on the image is associated
with three intensity values (Ir(x, y), Ig(x, y), Ib(x, y)),
where Ir, Ig and Ib are the intensities sensed by opto-
electronic sensors corresponding to red, green and blue
optical spectral bands respectively. These band spe-
cific readings are stochastic in nature and follow a sta-
tistical physics model, Φ (Healey & Kondepudy, 1994),
Φ is defined as a function of the optical response of the
camera, spectral incident irradiance pattern and spec-
tral response of TPI model. With a maximum like-
lihood estimation (MLE) of photon densities across
multiple cameras, response of TPI remains the only

variable factor affecting Φ. Since the model Φ varies
over 11 different skin disorders and a complete range of
patients, we propose to learn Φ from the information
(Ir(x, y), Ig(x, y), Ib(x, y)) from annotated training im-
ages using a set of weak learners to have knowledge
represented as a set Θ = {Φ}, which then facilitates
to create a tissue specific photon interaction statistical
physics model capable of segregating 11 skin disorders.

Formal definition: The probability p(ω|I, (x, y)) of
detecting a tissue of type ω is the response of a func-
tion H(ω|Θ, I, (x, y); {I}train) that uses the knowledge
of TPI locally learned on the sample image I and previ-
ously learned Θ = {Φ} using the training set {I}train.

3. Exposition to the Solution

The given problem can be modeled as an inductive
transfer learning problem (Pan & Yang, 1994) where
we improve the performance of a machine learning
task by including knowledge acquired while solving
a related task at an earlier stage. The knowledge
gets transferred from source task (accomplished on the
source domain), and is imbibed at the target task (ac-
complished on the target domain). Here knowledge
acquired at the source by modeling of TPI statistical
physics, is transferred to the target for probabilistically
classifying tissues among ω ∈ Ω = {healthy skin, acne
rosacea, basal cell carcinoma, hailey hailey, impetigo,
lichen planus, melanoma, nevus, pemphigus vulgaris,
psoriasis, squamous cell carcinoma, vitiligo} utilizing
the function H(ω|Θ, I; {I}train). Both source and tar-
get domain are the RGB images acquired using con-
sumer grade cameras under uncontrolled illumination,
and are MLE normalized. The normalization process,
source and the target tasks are described next:

3.1. MLE Normalization of Images

Our approach is generic to adapt to the variations
across the images acquired from multiple consumer
grade cameras. In order to incorporate this functional-
ity we correct for (i) white balance shifts introduced by
uncontrolled illumination conditions using the white-
patch approximation rule with green channel as the
reference standard; and (ii) sensor response normal-
ization across all optical wavelengths across multiple
cameras by matching the histogram of each color chan-
nel to the MLE of the histogram of the corresponding
channel over all images in the dataset.

3.2. Modeling of TPI Statistical Physics

The photon induced voltage (D) read out by the cam-
era as a result of the TPI is formulated as: D =
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(KRepT + NDC + NS + NR)A + NQ, where K is the
external quantum efficiency of the sensor (Volts /elec-
tron), T is the typical integration time of the sensor.
NDC , NS , NR and A are the dark current noise, shot
noise, readout noise and amplification factor of the
readout circuitry respectively. NQ is the quantization
noise of the ADC. The parameter Rep is the rate of
photon induced electron generation at a site on the
camera photosensor and is defined as (Healey & Kon-
depudy, 1994)

Rep =

∫
λ

∫
y

∫
x

B(x, y, λ)Sr(x, y)q(λ)dxdydλ (1)

where (x, y) are continuous coordinates on the sensor
plane, q(λ) is the internal quantum efficiency of the de-
tector (electrons/ Joule) as a function of wavelength
of incident radiation λ. Sr(x, y) is the spatial response
of the collection site on the sensor. The spectral irra-
diance pattern B(x, y, λ) (Watt / unit area) incident
on the sensor is modeled as

B(x, y, λ) = [R(x, y, λ)L(x, y, λ) ∗ p(x, y, λ)]t(λ) (2)

where ∗ is the spatial convolution operator, p(x, y, λ)
is the point-spread-function of the camera optics,
and t(λ) is the spectral transmission of the optics.
R(x, y, λ) is the spatially varying spectral reflectance
of the surface being imaged and L(x, y, λ) is the spa-
tially varying illumination model.

The parameters NDC , NS , NR, NQ << KRepT for cal-
ibrated sensors (Healey & Kondepudy, 1994), thus
D ≈ AKRepT = RepT

′. The digitally readout voltage
(d) from a sensor is a stochastically sensed value of the
induced voltage (D) at an instance and is known to be
Poisson distributed (Foi et al., 2001) with

f(d|Rep, T ′) ∝
(RepT

′)de−RepT
′

d!
λ ∈ [λ1, λ2] (3)

where RepT
′ = E[d] = var(d), with E[·] and var(·) re-

spectively representing mathematical expectation and
variance operators, and the system is responsive to the
range of optical wavelength λ ∈ [λ1, λ2]

Each of the three channels of RGB sensor with photon
incidence rates (Rep[r], Rep[g], Rep[b]) follows the Pois-
son distribution, hence the parameters for these dis-
tributions can be estimated as Rep[λ]T

′ = E[d[λ]]. We
estimate Rep[λ]T

′ at a location (x, y) ∈ I using samples
in a neighborhood of k × k pixel centered at (x, y), at
multiple scales (Willett & Nowak, 1994), where each
value of k represents a unique scale and k ∈ Z+.

Table 1. Accuracy of 11 skin condition identification in
8−folded cross validation experiments. We present mean
and variation across folds, max. and min. accuracy.

Top k−pred. mean± std. dev.(%) max% min%

1 66.14 ± 9.06 76.36 50.91
2 90.00 ± 5.14 94.54 81.82
3 94.55 ± 5.05 100.0 83.64
4 97.50 ± 3.21 100.0 90.91
5 98.41 ± 1.80 100.0 94.55
6 99.32 ± 0.94 100.0 98.18

In the set of MLE normalized images, only R(x, y, λ)
in (2) varies over different pathologies and lesions in-
dicating the TPI. Hence, Rep[λ] at multiple scales k is
an indicator of R(x, y, λ) and can thus be appropri-
ately used to model the knowledge of tissue-photon-
interaction. Our knowledge set Θ can now be repre-
sented as:

Θ = {Φk[λ]} ∀[λ] ∈ {R,G,B}, k ∈ {k1, ..., kn} (4)

which is an ordered vector learned at n different scales
for the three channels of RGB sensor.

3.3. Inductive Transfer Learning of TPI Model
for Quantitative Dermatopathology

The knowledge acquired as Θ in (4) must be tis-
sue specific set, {Θ}|ω ∀ω ∈ Ω given that R(·) in
(2) would be tissue specific. The non-parametric
distributed clusters formed by {Θ}|ω, can be effi-
ciently learned using supervised non-parametric learn-
ers such as ensemble learners. For learning {Θ}|ω
as the model H(ω|Θ, I, (x, y); {I}train), we have
used random forest non-parametric supervised learn-
ers (Breiman, 2001), which is an ensemble of mul-
tiple decision trees jointly forming the model H(·).
Hence, the probability p(ω|I, (x, y)) of detecting a tis-
sue of type ω ∈ Ω is the response of the learned forest
H(ω|Θ, I, (x, y); {I}train).

4. Experimental Results - Discussions

The experiments were performed for identifying 11
skin conditions using a dataset of 40 images per class,
totaling to 440 images. The images were sources from
publicly available sources1 and are archived2 along
with classifications. Each of the images were labeled
by a Dermatopathologist with 15 years of experience.

1http://www.atlasdermatologico.com.br/browse.jsf
2http://www.skincurate.com/dl/ISBI2016 Dataset.zip
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Table 2. Lesion area classification accuracy for11 skin con-
ditions computed image wise over 8−folded experiments.

Skin Cond. mean ± std. dev.(%) max% min%

Acne 84.62 ± 13.13 98.70 65.13
B.C.C. 54.98 ± 7.12 66.45 46.55
H.Hailey 66.11 ± 24.11 93.33 27.64
Impetigo 66.00 ± 21.78 85.39 34.20
Lich. pl. 50.24 ± 22.15 78.79 8.62
Melanoma 60.80 ± 24.10 87.21 20.32
N. Nevus 54.22 ± 11.66 70.94 41.55
P.vulgaris 78.33 ± 15.25 97.54 48.47
Psoriasis 61.60 ± 25.48 91.81 19.66
S.C.C. 60.58 ± 13.09 83.09 48.96
Vitiligo 53.41 ± 9.96 71.18 42.38

(a) Feature Importance (b) Classification Matrix

Figure 2. Performance of the model in terms of (a) factor
importance of each component Φ in the TPI model, and
(b) the confusion matrix of classification over 11 skin cond.

An 8-fold cross validation experiment was performed
using the dataset with no tested samples shared across
folds and preserving the priori in each fold to that of
the dataset. Table 1 presents the accuracy of skin
condition identification in our experiments, where ac-
curacy is reported in terms of true-positive within the
top k−predictions. We achieve 94.55±5.05% accuracy
in the top 3 predictions, while outperforming the prior
art at accuracy of 25.12% (Razeghi et al., 2013) and
the average lesion area classification accuracy over all
the classes is 62.80± 10.62%.

Table 2 and Fig. 2(a) summarize the pixel classifica-
tion accuracy for each of the 11 skin conditions over 8
folds. Conditions like acne rosacea (Fig. 1(a)) which
are visually distinct achieve comparably higher accu-
racy, while conditions like psoriasis, melanoma, hai-
ley hailey (Fig. 1) exhibit high variance, in conjunc-
tion with their large intra-class variance in appearance.
Fig. 2(a) shows the (factor) importance map for each
of the TPI model constituents. The estimators cor-
responding to the red wavelengths are observed to be

associated with higher importance compared to green
and blue, and the importance increases over scales.

5. Conclusion

We have proposed here a method for quantitative
dermatopathology using (i) consumer grade camera
imaging with uncontrolled illumination and (ii) in-
ductive transfer learning of tissue-photon interaction
statistical physics for skin condition identification.
We include an MLE based photon density normal-
ization scheme to compensate for inter-camera and
illumination variation. We experimentally evaluate
its performance over a dataset of 11 commonly
encountered skin conditions and report an accuracy
of 94.55%. Future scope is to extend this approach
over a larger classes of skin conditions imaged with
consumer grade cameras.

Dual Submission

This paper is currently under review for IEEE Journal
of Biomedical and Health Informatics.

References

Breiman, L. Random forests, Mach. Learn. vol. 45,
no. 1, pp. 5-32, 2001.

Foi, A., Trimeche, M., Katkovnik, V. and Egiazarian,
K. Practical poissonian-gaussian noise modeling and
fitting for singleimage raw-data, IEEE Trans. Image
Process., vol. 17, no. 10, pp. 1737-1754, 2008

Ganster, H., Pinz, A., Rohrer, R., Wildling, E.,
Binder, M. and Kittler, H. Automated melanoma
recognition, IEEE Trans. Med. Imag.,vol. 20, no. 3,
pp. 233–239, 2001

Healey, G.E. and Kondepudy, R. Radiometric ccd cam-
era calibration and noise estimation , IEEE Trans.
Pat. Anal., Mach. Intell., vol. 16, no. 3, pp. 267-276,
1994

Pan, S. J. and Yang, Q. A survey on transfer learning,
IEEE Trans. Knowledge Data Engg., vol. 22, no. 10,
pp. 1345-1359, 2010.

Razeghi, O., Fu, H., and Qiu,G. Building skin condi-
tion recogniser using crowd-sourced high level knowl-
edge, Med. Imag. Under. and Anal., pp. 225230,
2013

Willett, R. M. and Nowak, R. D. Multiscale poisson
intensity and density estimation, IEEE Trans. Inf.
Th., vol. 53, no. 9, pp. 31713187, 2007.


