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Abstract

Study of virality and information diffusion is
a topic gaining traction rapidly in the com-
putational social sciences. Computer vision
and social network analysis research has also
focused on understanding the impact of con-
tent and information diffusion in making con-
tent viral. We present a novel algorithm to
model image virality on online networks us-
ing the increasingly popular deep convolu-
tional neural network architectures. Our pro-
posed model provides significant insights into
the features that are responsible for promot-
ing virality and surpass the existing state-of-
the-art by a 10% relative improvement in pre-
diction.

1. Introduction

The study of virality has been slowly gaining traction
in the domain of computational social science research.
Owing to the increasing prominence of online adver-
tising, understanding and predicting what content be-
comes viral on the Internet is an important, with appli-
cations ranging from intelligent content organization
on the Internet (Jain et al., 2014) to Twitter trend
analysis (Petrovic et al., 2011).

Apart from online marketing, the impact of several
other domains of active Internet participation depends
on content virality. The reach of professionals, orga-
nizations, social causes and non-profits spitballs ex-
ponentially once viral content is associated with the
same. Hence, as described previously in Deza and
Parikh’s (Deza & Parikh, 2015) novel introductory
study of image virality, content virality has been stud-
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ied extensively in the domain of marketing research
(Berger & Schwartz, 2011; Berger, 2013).

The computer vision community has seen a surge in
the usage of deep learning for end-to-end learning for
computer vision, from image classification (Krizhevsky
et al., 2012), semantic segmentation (Chen et al., 2014)
and even image captioning (Karpathy & Fei-Fei, 2015),
and there has also been work on abstract ontological
tasks, such as prediction of attributes (Parikh & Grau-
man, 2011), humor (Chandrasekaran et al., 2015), im-
age memorability (Isola et al., 2011) and street image
safety (Naik et al., 2014).

Deza and Parikh’s work is an important stepping
stone to understanding the nature of content virality.
(Lakkaraju et al., 2013) describe the temporal rela-
tionships of image virality in mode detail, along with
several other streams of research (Jain et al., 2014;
Goel et al., 2015) discussing the nature of the under-
lying structure of diffusion present in viral content.

This posits the obvious question of the relative impor-
tance of the content matter of a viral image, and if it is
content alone that can govern the extent of virality an
image gains online. Deza and Parikh perform an ex-
tensive study of the same, using handcrafted computer
vision techniques - identifying that it is possible, with
a certain degree of accuracy, to predict the virality of
an image based on the image content alone. We aim to,
with this study, bridge two streams of research from
computer vision (attribute learning and deep learn-
ing) and computational social science by constructing
an end-to-end learning system for predicting image vi-
rality.

2. Virality Prediction

2.1. Quantifying Virality

The first question encountered in the study of attribute
learning is the quantification of attributes. Previous
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studies on attributes (Parikh & Grauman, 2011; Sta-
iano et al., 2013) have observed that obtaining a rel-
ative label gives better prediction accuracy. Another
study on rating data collection (Mojica Ruiz et al.)
reveals a bimodal nature of ratings as well, where hav-
ing a relative label instead of an absolute metric is less
prone to label noise. In attribute learning through
vision, we find a similar prediction pipeline (Parikh
& Grauman, 2011), where pairwise comparisons are
available and an ordinal ranking is constructed from
the comparisons.

Image Virality Dataset We preserve the exact
dataset provided by (Deza & Parikh, 2015), which
was originally sampled from (Lakkaraju et al., 2013).
However, in addition to the training pairs proposed
by (Deza & Parikh, 2015), we add additional data by
constructing random pairs of viral and non-viral im-
ages, distinct from the existing pairs in the test set.
We randomly select 10M of the potential 25M pairs
(compared to the 10,078 images in the original study).
There are three pairwise splits - complete data predic-
tion, random splits and Top/Bottom 250. For more
details, we refer the reader to (Deza & Parikh, 2015).

Image Popularity Dataset This dataset is the data
utilized by Khosla et al. (Khosla et al., 2014) for
their popularity analysis. It consists of 2.3M im-
ages sampled from Flickr and labeled as ‘popular’ and
‘not-popular’ according to their upvote measure. The
three sub-categories for construction of the dataset
are 1-per-user,user-mix and user-specific. We refer the
reader to (Khosla et al., 2014) for more information.

2.2. Problem Formulation

Based on the nature of the dataset, we can formulate
the problem as a pairwise classification problem. At
each instance in training, our model will receive two in-
put images, and the model will have to learn to predict
the image with the stronger attribute present. Having
obtained the predictions of the network, we can con-
struct an ordinal ranking of the images, and denote
the top k as having the attribute present.

We have a set S of N images (obtained from Lakkaraju
et al (Lakkaraju et al., 2013)), of which a subset Sv of
Nv images are classified as viral, based on the virality
metric defined by Deza et al. (Deza & Parikh, 2015).
The model is fed a randomly generated ordered pair of
images (I1, I2) from S - one from S\Sv, the other from
Sv. Hence, we can generate a total of O(Nv(N −Nv))
distinct ordered image pairs of which we select d pairs
to form set D, which is our dataset, which we split
later into Dtrain, Dval, Dtest i.e. training, validation
and test sets respectively, based on the existing splits

of (Deza & Parikh, 2015). The output variable y in
each image pair is the viral image index - +1 if I1 is
viral, and −1 if I2 is viral.

2.3. Pseudo-Siamese Networks

We construct a convolutional neural network archi-
tecture to learn an attribute regressor by taking an
input as a pair of images, and label as the winning
image. The basic structure of our convolutional neu-
ral network involves two disjoint Siamese networks
which share weights and are later combined to a fully-
connected layer and trained discriminatively, following
(Chopra et al., 2005). We take existing image clas-
sification architectures (AlexNet (Krizhevsky et al.,
2012) and VGG-Net-19 (Simonyan & Zisserman,
2014)), and discard the final decision boundary layer
and fine-tune two such disjoint networks from their
image classification weights. For newer layers, we ran-
domly initialize weights following (Krizhevsky et al.,
2012) and construct the final decision boundary.

2.4. Ranking Loss

Unlike (Chopra et al., 2005), we do not wish to learn
a similarity metric, and wish to minimize our ranking
loss. Hence, we formulate a loss function given by

Ep =
∑

(I1,I2,y)∈Dbatch

Ec + λEr (1)

Ec = max (0, y · (gr(I2)− gr(I1)))
2

(2)

Er =
1

(fr(I2)− fr(I1))2
(3)

Here, the function gr is simply the softmax of the out-
puts.

gr(Ii) =
efr(Ii)

efr(I1) + efr(I2)
i ∈ {1, 2} (4)

Ec minimizes the direct ranking error, and the soft-
max on the output neurons enforces the outputs of
the network to be binary. The second term in the loss
function can be thought of as a regularizer on the dis-
tribution of fr learnt, and it enforces (fr(I2)−fr(I1))2

to be as large as possible for each input pair. However,
the weighing term λ must be kept small to prevent os-
cillations during training.

This architecture is referred to as the PVCNN, that
is, the Pairwise Virality CNN in the experimental
sections. For networks initialized with the AlexNet
architecture, the results are indicated by AlexNet-
PVCNN, and similarly for networks initialized with
the VGGNet-19 architecture, the results are indi-
cated by VGGNet-19-PVCNN. As mentioned in re-
cent deep learning literature, we also employ standard
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L2 regularization (weight-decay) and momentum for
training our networks with stochastic gradient descent.

2.5. Feature Augmentation

To provide additional contextual information, we mod-
ify the PVCNN architecture introduced in the previ-
ous section with additional semantic information avail-
able from the dataset. We fine-tune an image classifi-
cation network, with initial weights and architectures
from (Simonyan & Zisserman, 2014; Krizhevsky et al.,
2012) with class labels as the topic IDs of submitted
images (this network is referred to as Topic CNN).
Post training, we discard the decision boundary, and
feed the penultimate layer weights as additional fea-
tures to the fully-connected layer in PVCNN. This
architecture is known as TPVCNN (Topic-PVCNN)
henceforth (see Figure 1 for further details). We lever-
age topic features to supply additional relevant infor-
mation.

3. Experiments

Our experiments were carried out in Caffe (Jia et al.,
2014) with the Python framework. All experiments
were run with NVIDIA TITAN X GPUs. The model
weights mentioned for AlexNet and VGG-Net architec-
tures were obtained from the online Caffe Model-Zoo.
For training the neural networks, the ranking networks
were trained with an initial learning rate of 0.001, and
momentum was fixed as 0.9 and initial weights were
sampled from a gaussian distribution with mean 0 and
sigma 0.05 (following (Krizhevsky et al., 2012)). In the
ranking loss, regularization (L2) was set with weight
0.05 and λ was set at 0.001 for the optimal results.The
learning rate was decreased once the network began os-
cillating and the learning rate was decreased a total of
3 times before convergence was achieved.

4. Analysis and Conclusion

We see that our deep networks outperform the state-
of-the-art (68.10% on Random Splits) comfortably
on both the deeper networks on the Image Virality
Dataset. The feature augmentation which leverages
category information into the prediction also increases
the prediction accuracy, which leads us to confirm the
earlier hypothesis (Deza & Parikh, 2015) that some im-
age categories are more likely to be viral than others.
On the popularity dataset, our performance is com-
petitive to the state-of-the-art, and we attribute this
to the bimodal distribution of virality scores compared
to a smoother distribution in the popularity dataset.
A detailed examination of the deep features will be

Figure 2. 4 Nearest Neighbours for two sample inputs in
the space of pre-final layer activations. The first image is
a sample with a high virality score (13.17) and the second
image is a sample with a low virality score (-0.51).

available in the full version of the paper.

We would like to conclude by summarizing our contri-
butions - creating a novel pairwise architecture for ab-
stract attribute prediction, which we aim to generalize
to other abstract computer vision tasks as well, such
as predicting relative attributes (Parikh & Grauman,
2011), memorability (Isola et al., 2011) and safety
(Naik et al., 2014).

References

Berger, Jonah. Contagious: Why things catch on. Simon
and Schuster, 2013.

Berger, Jonah and Schwartz, Eric M. What drives immedi-
ate and ongoing word of mouth? Journal of Marketing
Research, 48(5):869–880, 2011.

Chandrasekaran, Arjun, Vijayakumar, Ashwin K., An-
tol, Stanislaw, Bansal, Mohit, Batra, Dhruv, Zitnick,
C. Lawrence, and Parikh, Devi. We are humor beings:
Understanding and predicting visual humor. CoRR,
abs/1512.04407, 2015. URL http://arxiv.org/abs/
1512.04407.

Chen, Liang-Chieh, Papandreou, George, Kokkinos, Ia-
sonas, Murphy, Kevin, and Yuille, Alan L. Semantic
image segmentation with deep convolutional nets and
fully connected crfs. CoRR, abs/1412.7062, 2014. URL
http://arxiv.org/abs/1412.7062.

Chopra, Sumit, Hadsell, Raia, and LeCun, Yann. Learn-
ing a similarity metric discriminatively, with application
to face verification. In Computer Vision and Pattern
Recognition, 2005. CVPR 2005. IEEE Computer Soci-
ety Conference on, volume 1, pp. 539–546. IEEE, 2005.

Deza, Arturo and Parikh, Devi. Understanding image vi-
rality. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1818–1826,
2015.

Goel, Sharad, Anderson, Ashton, Hofman, Jake, and
Watts, Duncan J. The structural virality of online dif-
fusion. Management Science, 62(1):180–196, 2015.

http://arxiv.org/abs/1512.04407
http://arxiv.org/abs/1512.04407
http://arxiv.org/abs/1412.7062


Deep Convolutional Networks for Modeling Image Virality

Figure 1. Architecture for TPVCNN using the AlexNet hierarchy.Yellow - Loss/Function, Red - Convolution, Blue -
Max-Pooling, Green - Fully Connected. The layer blocks with a blue outline imply fine-tuning from AlexNet LSRVC
weights, green outline imply weights from Topic-CNN. The dashed lines represent the layers which have identical weights.
Yellow background shade represents fixed weights (no training). The different shades of dashed lines imply weight-sharing
from two different networks. The PVCNN architecture does not have the two yellow fixed networks.

Image Virality Dataset (Deza & Parikh, 2015)
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AlexNet - TPVCNN 63.21% 72.48% 66.84%
VGGNet-19 - PVCNN 64.47% 72.25% 71.03%
VGGNet-19 - TPVCNN 65.28% 75.88% 75.19%

Popularity Dataset (Khosla et al., 2014)
Algorithm 1-per-user User-mix User-specific
Deep Learning Features (DeCAF) 28% 33% 26%
Combined Features (GIST,Object,Color) 31% 36% 40%
AlexNet - PVCNN 27.78% 32.91% 29.55%
AlexNet - TPVCNN 30.56% 36.86% 33.75%
VGGNet-19 - PVCNN 29.92% 35.64% 34.81%
VGGNet-19 - TPVCNN 31.57% 38.21% 38.85%

Table 1. Table summarizing our empirical results on the Viral Images and Popularity Datasets. Scores reported are
percentage accuracies, and all baselines have been reported from (Deza & Parikh, 2015) and (Khosla et al., 2014).
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