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Abstract

Given a large dimensional input and output
space, even simple regression is prohibitively
costly. Typically, dimensionality reduction
or feature selection is performed in the input
space to simplify the problem. However, with
modern paradigms, e.g. topic modelling, im-
age classification, etc., even the output space
is extremely large and further compounds
the problem. Moreover, in contrast to in-
put dimensionality reduction, dimensionality
reduction in output is complicated. We pro-
pose a mutual information based output di-
mensionality reduction, that takes into ac-
count the relationship between the input and
output which is essential for regression and
classification problems.

1. Introduction

Machine learning deals with the finding a target func-
tion f : X → Y, where X is the input space and Y
is the output space, after observing some finite set
of samples {(xi, yi)}. In practice, the input space
X can be very high dimensional. A lot of methods
have been invented to deal with high dimensional in-
put space. It is also envisionable that the output space
is of high dimensions, for example topic modelling or
image classification where the output might represent
a number topics a document might belong to or var-
ious objects present in an image. More importantly
the output variables are not completely random, they
are generally correlated (for example, document tags
of ‘machine-learning’ and ‘statistics’ might appear to-
gether more often than ‘statistics’ and ‘NP hard’).
Similarly, it is possible that outputs of multivariate
regression problem might also be correlated. In (Bal-
asubramanian & Lebanon, 2012) the authors build a
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two step model:
X 7→ YL (1)

YL 7→ Y, (2)

where L ⊆ {1, ...,K}, also known as the landmark
variables (LMV), K is the dimension of the output
space Y and YL = {Yi : i ∈ L}. The assumption
is that the non-landmark variables can be predicted
from the LMV by expressing them as a sparse linear
combination of LMV,

Y = AYL + n. (3)

If |L| � K then the method can scale well for high
dimension y.

In (Balasubramanian & Lebanon, 2012) the authors
use the following group Lasso optimization problem to
determine the set L and the matrix A:

Â = arg min
A∈Rk×k

‖ Y − Y A ‖2F +λ1 ‖ A ‖1,2 +λ2 ‖ A ‖1,

(4)
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In (Balasubramanian & Lebanon, 2012), authors do
not consider the dependence of L on the input vari-
able X. This might not be optimal. In this work,
we propose a novel approach for selecting LMV set L
which is a function of the input.

2. Motivation and Formulation

To accomplish output dimensionality reduction while
taking input into account, we propose a mutual in-
formation based LMV selection. Mutual information
captures the amount of correlation between the input
and the output. It has been used in machine learning
for many purposes, e.g. feature selection, intrusion
detection, etc.

In linear model the output is modelled as Y = βX+n,
where n is the noise. If X and n are Gaussian then
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mutual information function

C(RL) := log det
(
I + βRLβ

†
RL

)
, (5)

where βRL is β restricted to the rows in the set RL.
Selecting the components of the output Y is equiva-
lent to selecting rows of the regression matrix β. In
general selecting the best subset is NP hard. How-
ever, as shown in (Vaze & Ganapathy, 2012) C(RL)
is submodular and hence a greedy algorithm can get
(1 − 1/e) of performance due to Theorem(2.1). Once
RL is selected we use eqn.(6) to determine the expan-
sion matrix.

Â = arg min
A∈Rk×k

‖ Y − YRLA ‖2F +λ ‖ A ‖1, (6)

where YRL is restriction of rows of Y to those in set
RL.

Definition 2.1 Let Ω be a set then a function f :
2Ω → R is submodular if ∀S, T ⊂ Ω we have f(S) +
f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

Theorem 2.1 (Nemhauser et al., 1978) For a non-
negative, monotone submodular function f , let S be
a set of size k obtained by selecting elements one at
a time, each time choosing greedily that provides the
largest marginal increase in the function value. Let
S∗ be a set that maximizes the value of f over all k-
element sets. Then f(S) ≥ (1− 1/e)f(S∗).

To recapitulate, we assume the following model Y =
βX + n. We learn β by ridge regression. Find L most
useful rows greedily maximizing mutual information,
βRL . Then we get YRL = βRLX. Learn the matrix A
such that we minimize eqn.(6). When a new X arrives
βRLXA is the final answer.

3. Experiments

We have conducted experiments on synthetic data
only. We generate the synthetic data as follows: We
first generate the landmark output using random ma-
trices, X is sampled from Gaussian distribution and β
from uniform. We then use another random matrix to
expand the output to a larger Y and Gaussian noise
to it. Ridge regression without any cross-validation is
done to find the regression matrix β̂ for the expanded
output Y. Greedily row subset RL is selected from
rows of β̂, these are our LMV.

The results of simulation are shown in Fig.1. We see
if the LMV assumed is less than the true LMV the
RMSE between Y and the predicted Ŷ is quite high.
But, when the LMV is equal to or more than the num-
ber of LMV, then we have substantial reduction in
RMSE.

Figure 1. RMSE as the number of assumed number of
LMV is changed. The true number of LMV is 15.

4. Conclusion

In multiple regression problem, if there is correlation
between the output variables we can exploit this to
speed up learning. Instead of making a model for
each output variable we train only on the LMV and
then go from LMV to the full output variable via the
linear transformation. Selecting LMV is easy, since
the greedy algorithms complexity is O(LK) instead of
O(N2) (for best subset) due to the submodularity of
C(RL). Hence, finding true number of landmark vari-
ables will help speeding up the regression process by
two step model of section(1). We would also like to
see how this method performs with respect to other
methods for LMV selection.
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