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Abstract

We study consistency properties of surrogate
loss functions for general multiclass classifica-
tion problems, defined by a general loss ma-
trix. We extend the notion of classification
calibration, which has been studied for cer-
tain specific learning problems, to the gen-
eral multiclass setting. We then introduce
the notion of convex calibration dimension of
a multiclass loss matrix which is an intrinsic
measure of difficulty of the learning problem
defined by the loss matrix. We derive both
upper and lower bounds on this quantity, use
these bounds to analyze various loss matrices
and derive interesting results concerning the
difficulty of ranking.

1. Introduction

There has been significant interest and progress in re-
cent years in understanding consistency of learning
methods for various finite-output learning problems,
such as binary classification, multiclass 0-1 classifi-
cation, and various forms of ranking and multi-label
prediction problems (Bartlett et al., 2006; Tewari &
Bartlett, 2007; Duchi et al., 2010; Zhang, 2004). Such
finite-output problems can all be viewed as instances of
a general multiclass learning problem, whose structure
is defined by a loss function, or equivalently, by a loss
matrix. While the studies above have contributed to
the understanding of learning problems corresponding
to certain forms of loss matrices, a framework for an-
alyzing consistency properties for a general multiclass
learning problem, defined by a general loss matrix, has
remained elusive.

In this paper, we analyze consistency of surrogate
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losses for general multiclass learning problems, build-
ing on past results (Tewari & Bartlett, 2007; Zhang,
2004). We start in Section 2 with some background
and formalize the notion of calibration with respect to
a general loss matrix. Section 3 introduces the notion
of convex calibration (CC) dimension of a loss ma-
trix, a fundamental quantity that measures the small-
est ‘size’ of a prediction space for which it is possible
to design a convex ‘calibrated’ surrogates. We derive
both upper and lower bounds on this quantity, and use
these results to analyze various loss matrices. As an
application of these bounds, in Section 4, we show that
the mean average precision and pairwise disagreement
losses used in ranking have large CC-dimension and
hence many known algorithms are inconsistent.

2. Preliminaries and Setup

We are given training examples (X1, Y1), . . . , (Xm, Ym)
drawn i.i.d. from a distribution D on X ×Y, where X
is an instance space and Y = [n] = {1, . . . , n} is a finite
set of class labels. We are also given a finite set T =
[k] = {1, . . . , k} of target/prediction labels in which
predictions are to be made, and a loss function ` :
Y × T →[0,∞), where `(y, t) denotes the loss incurred
on predicting t ∈ T when the label is y ∈ Y. In many
common learning problems, T = Y, but in general,
these could be different (e.g. when there is an‘abstain’
option available to a classifier, in which case k = n+1).
We denote by ∆n, the set {p ∈ Rn+ :

∑
y py = 1}.

We will find it convenient to view the loss function ` as
a loss matrix. For each y ∈ [n], t ∈ [k], we will denote
`(y, t) by `yt and define `t as `t = (`1t, . . . , `nt)

> ∈ Rn.

The standard ERM algorithm requires us to find a
function h ∈ H ⊆ T X that minimizes

er`[h] =

m∑
i=1

`(Yi, h(Xi)) (1)

but due to the discrete nature of the above problem
one tries to minimize a ‘surrogate’ loss instead. Let
T̂ ⊆ Rd for some d ∈ N and ψ : Y × T̂ →R. The
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problem of interest now is to find a function f ∈ F ⊆
T̂ X that minimizes

erψ[f ] =

m∑
i=1

ψ(Yi, f(Xi)) (2)

The above problem is often easier because we can
choose ψ to be convex in its second argument and F
to be a convex set, in which case the above problem is
a convex optimization problem. But in order to solve
the original problem given by `, we need to choose ψ
appropriately. We now give a desirable property of
a surrogate ψ, when our objective is minimizing the
`-risk.

Definition 1 (`-calibration). Let ` : [n] × [k]→R+.

A surrogate loss function ψ : [n] × T̂ →R+ is said to

be `-calibrated if there exists a function pred : T̂ →[k]
such that ∀p ∈ ∆n

inf
t̂∈T̂ :pred(t̂)/∈argmintp

>`t

p>ψ(t̂) > inf
t̂∈T̂

p>ψ(t̂) .

One can show that if a surrogate ψ is `-calibrated then
the ψ-risk minimization algorithm is a consistent pro-
cedure for optimizing the `-risk. For more details see
(Ramaswamy & Agarwal, 2012).

3. Convex Calibration Dimension

From Equation 2 we see that the optimization variable
f consists of d functions from X to R, and hence d can
be seen as a measure of complexity of the surrogate.
This observation also gives us a natural definition for
an intrinsic measure of difficulty of a loss matrix, which
we call the convex calibration dimension.

Definition 2 (Convex calibration dimension). Let ` :
[n]×[k]→R+. Define the convex calibration dimension
(CC dimension) of ` (denoted by CCdim(`)) as the
smallest d ∈ N, such that there exists a convex set
T̂ ⊆ Rd and function ψ : [n] × T̂ →R+ convex in its
second argument and `-calibrated.

We derive some simple bounds on the above quantity

µ(`) ≤ CCdim(`) ≤ min(n− 1, rank(`)) (3)

where rank(`) is the rank of the loss matrix and µ(`)
is a geometric property of the loss matrix explained in
(Ramaswamy & Agarwal, 2012).

Some losses for which we can exactly determine the
CC-dimension are the 0-1 loss (`0-1(y, t) = 1(y 6= t))
and the ordinal regression loss (`ord(y, t) = |y−t|) both
of which have Y = T = [n]. We get CCdim(`0-1) =
n− 1 and CCdim(`ord) = 1. We can get tight bounds
for some other losses.

Theorem 3. Let ` : [n] × [k]→R be such that ∃p ∈
relint(∆n), c ∈ R with p>`t = c for all t ∈ [k]. Then

rank(`)− 2 ≤ CCdim(`) ≤ rank(`)

4. Application to Subset Ranking

In particular we can apply the previous theorem to
certain ranking losses where the prediction space T is
the set of all permutations of some r objects (say web
pages). The losses we consider are the pairwise dis-
agreement (`pair) and mean average precision (`MAP).
We refer the reader to (Calauzènes et al., 2012; Ra-
maswamy & Agarwal, 2012) for details on these loss
matrices. We get the following bounds

r(r − 1)

2
− 2 ≤ CCdim(`pair) ≤ r(r − 1)

2
r(r − 1)

2
− 4 ≤ CCdim(`MAP) ≤ r(r + 1)

2

The lower bound is greater than r for both these losses
(if r ≥ 5) and hence any convex score based surrogate
cannot be calibrated with these ranking losses, thus
proving the conjecture made in (Duchi et al., 2010).

5. Conclusion and Extensions

The above results can be applied to analyze a vari-
ety of loss matrices in a unified framework. We are
currently developing methods for constructing explicit
low dimensional convex surrogates for certain types of
loss matrices with small CC-dimension.
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