Information Complexity and the Geometry of Communication

T.S. Jayram

IBM Almaden Research Center

December 19, 2009

э

Communication

イロト 不得 とくき とくき とうき

Communication

T.S. Jayram (IBM Almaden)

(日) (個) (E) (E) (E)

Communication



イロト イポト イヨト イヨト

4 / 36

"Communication does not signify a problem newly discovered in our times, but a fashion of thinking and a method of analyzing which we apply in the statement of all fundamental problems."

Richard McKeon (1957)

Communication (CS Theory Version)

Multi-party Communication

- There are $t \ge 2$ players P_1, P_2, \ldots, P_t
- The input is a tuple (x_1, x_2, \ldots, x_t)
- P_i holds x_i (number-in-hand)
- The *protocol* specifies the rules for writing messages (on a blackboard)
- Players can use private random coins
- The message transcript depends on both the input and randomness

Quantify the *necessary* amount of communication needed to solve a communication problem.

Many ways to measure communication:

- Length of communication, i.e. #bits in the transcript
- Pounds of communication
- Symmetric communication

How much information about the inputs is contained in Π ?

- Alice's input is a set $x \subseteq [1..n]$
- Bob's input is a set $y \subseteq [1..n]$
- Communication problem: are the sets are disjoint?

$$\text{Disj}(x, y) = \bigvee_{j=1}^{n} (x_j \land y_j)$$

T.S. Jayram (IBM Almaden) Information Complexity and Geometry December 19, 2009 8 / 36

э

L_{∞} estimation

- Inputs are $x, y \in \mathbb{R}^n$
- ℓ_{∞} norm $||a||_{\infty} = \max_{i} |a_{i}|$
- Threshold t, approximation $\alpha \ge 1$
- Is $||x y||_{\infty}$ at most t or greater than αt ?

$GapL_{\infty}$ and Dist

For each coordinate *j*:

$$|x_j - y_j| \le t \implies \text{Dist}(x_j, y_j) = 0, \text{ or}$$

$$|x_j - y_j| > \alpha t \implies \text{Dist}(x_j, y_j) = 1$$

$$\text{GapL}_{\infty}(x, y) = \bigvee_{j=1}^{n} \text{Dist}(x_j, y_j)$$

э

Direct Sum

• Given two decision problems f and g:

$$f(x, y) = \bigvee_{j=1}^{n} g(x_j, y_j)$$

• Can we relate the communication complexity of f to that of g?

Direct Sum ls $CC(f) \ge n \cdot CC(g)$?

- Difficult to prove by directly analyzing the transcript
- Maybe information theory can help ...

Conditional Entropy: H(X | Y) is the *uncertainty* in *X* conditioned on *Y* Mutual Information: I(X : Y) = H(X) - H(X | Y) is the *reduction* in uncertainty of *X* when conditioned on *Y*

Conditional Mutual Information: I(X : Y | Z) = H(X | Z) - H(X | Y, Z)

Information Cost/Complexity

Definition

Let Π be the transcript of a *t*-player protocol on input x_1, x_2, \ldots, x_t .

The information cost of a protocol equals

 $I(X_1, X_2, ..., X_t : \Pi | D),$

where X_1, X_2, \ldots, X_t are jointly independent conditioned on D.

Information Complexity IC(f): the *minimum* information cost of a protocol that *correctly* computes f

[Chakrabarti, Shi, Wirth and Yao], [Bar-Yossef, Jayram, Kumar and Sivakumar]

イロト 不得下 イヨト イヨト 二日

Theorem

Suppose f can be written as an OR of n disjoint instances of g. Then,

 $IC(f) \ge n \cdot IC(g).$

- Since CC(f) ≥ IC(f), we can prove lower bounds on CC(f) by proving lower bounds on IC(g).
- However, the support of the input distribution of g is on the O-instances of g!

Leads to interesting connections between information complexity and the geometry of communication.

Part II

Distance Estimation

T.S. Jayram (IBM Almaden) Information Complexity and Geometry December 19, 2009 14 / 36

イロト イポト イヨト イヨト

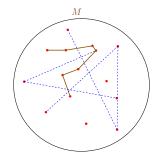
æ

Distance Estimation

A metric space M with distance function $d(\cdot, \cdot)$

- Alice holds $x \in M$; Bob holds $y \in M$
- Threshold *t*; approximation $\alpha \ge 1$
- Promise problem Dist:

No instance: $d(x, y) \le t$ (Close) Yes instance: $d(x, y) > \alpha t$ (Far)

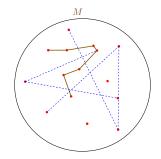


Distance Estimation

A metric space M with distance function $d(\cdot, \cdot)$

- Alice holds $x \in M$; Bob holds $y \in M$
- Threshold *t*; approximation $\alpha \ge 1$
- Promise problem Dist:

No instance: $d(x, y) \le t$ (Close) Yes instance: $d(x, y) > \alpha t$ (Far)



Goal

Prove a lower bound on the information complexity of Dist

Notation: Let $\|\cdot\| = \frac{1}{2} \|\cdot\|^2$.

Let ρ be an embedding of M into Euclidean space ℓ_2

- Suppose $d(x, y) = \|\rho(x) \rho(y)\|$, for all $x, y \in M$ (Isometry)
- ullet Then, ho separates the close and far instances of Dist
- How does one show that such an embedding does not exist?

Poincaré-Type Inequalities

Definition (Poincaré Inequality)

- distribution η_0 on close instances
- 2 distribution η_1 on far instances
- **③** parameter λ

A Poincaré inequality holds for Dist if for all $\rho: M \rightarrow \ell_2$:

$$\mathbb{E}_{(x,y)\sim\eta_0}\|\rho(x)-\rho(y)\| \ge \lambda \cdot \mathbb{E}_{(x,y)\sim\eta_1}\|\rho(x)-\rho(y)\|$$

- $\lambda \ge 1/\alpha \implies$ no isometric embeddings exist
- 2) with larger λ , can also consider embeddings with distortion
- \odot with smaller λ , we can still say something interesting!

• Let
$$\eta_0 =$$
 unif. distrib. on $\{0, 1, ..., m-1\}$.

э

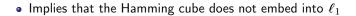
∃ →

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Let $\eta_0 = \text{unif. distrib. on } \{0, 1, ..., m-1\}.$ $\mathbb{E}_{x \sim \eta_0} \| \rho(x) - \rho(x+1) \| \ge \frac{1}{m} \cdot \| \rho(0) - \rho(m) \|$

- **2** Hamming cube $\{0,1\}^d$:
- η_0/η_1 = unif. distrib. on the edges/diagonals

 $\mathbb{E}_{(x,y)\sim\eta_0}\|\rho(x)-\rho(y)\|\geq \frac{1}{d}\cdot\mathbb{E}_{(x,y)\sim\eta_1}\|\rho(x)-\rho(y)\|$



• Let
$$\eta_0 = \text{unif. distrib. on } \{0, 1, ..., m-1\}.$$

$$\mathbb{E}_{x \sim \eta_0} \|\rho(x) - \rho(x+1)\| \ge \frac{1}{m} \cdot \|\rho(0) - \rho(m)\|$$

- **2** Hamming cube $\{0,1\}^d$:
- η_0/η_1 = unif. distrib. on the edges/diagonals

$$\mathbb{E}_{(x,y)\sim\eta_0}\|\rho(x)-\rho(y)\| \ge \frac{1}{d} \cdot \mathbb{E}_{(x,y)\sim\eta_1}\|\rho(x)-\rho(y)\|$$

- $\bullet\,$ Implies that the Hamming cube does not embed into ℓ_1
- [Andoni,Krauthgamer] proved a Poincaré inequality for edit distance and used it to prove communication vs. approximation tradeoff.

• Let
$$\eta_0 = \text{unif. distrib. on } \{0, 1, ..., m-1\}.$$

$$\mathbb{E}_{x \sim \eta_0} \|\rho(x) - \rho(x+1)\| \ge \frac{1}{m} \cdot \|\rho(0) - \rho(m)\|$$

- **2** Hamming cube $\{0,1\}^d$:
- $\eta_0/\eta_1 =$ unif. distrib. on the edges/diagonals

$$\mathbb{E}_{(x,y)\sim\eta_0}\left\|\rho(x)-\rho(y)\right\| \ge \frac{1}{d} \cdot \mathbb{E}_{(x,y)\sim\eta_1}\left\|\rho(x)-\rho(y)\right\|$$

- $\bullet\,$ Implies that the Hamming cube does not embed into ℓ_1
- [Andoni,Krauthgamer] proved a Poincaré inequality for edit distance and used it to prove communication vs. approximation tradeoff.
- **(a)** Expanders: Poincaré inequality with $\lambda =$ normalized spectral gap.

Theorem ([Andoni, Jayram and Patrascu]) Suppose Dist satisfies a Poincaré inequality w.r.t. distributions η_0 , η_1 , and parameter λ . Then, $IC(Dist) \ge \frac{\lambda}{8}$

- [Bar-Yossef, Jayram, Kumar and Sivakumar] proved this result for $M = \mathbb{R}$.
 - $\bullet\,$ Yields space lower bounds for estimating ℓ_∞ in a data stream

Image: Ima

3 N 3

- [Bar-Yossef, Jayram, Kumar and Sivakumar] proved this result for M = ℝ.
 Yields space lower bounds for estimating ℓ_∞ in a data stream
- [Jayram and Woodruff] proved this result for the Hamming cube
 Yields space lower bounds estimating cascaded norms L_k

 L_k
 L₀

э

- [Bar-Yossef, Jayram, Kumar and Sivakumar] proved this result for M = ℝ.
 Yields space lower bounds for estimating ℓ_∞ in a data stream
- [Jayram and Woodruff] proved this result for the Hamming cube
 Yields space lower bounds estimating cascaded norms L_k
 L_k
- Our result implies improved lower bounds for sketching edit distance: $\Omega(\log \log d) \Longrightarrow \Omega(\log d).$

3

Input Distribution

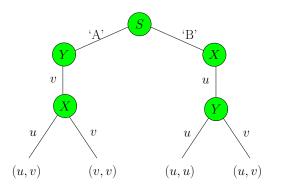
- **1** Define (X, Y, D) such that X and Y are independent conditioned on D
- 2 $\operatorname{Dist}(X, Y) = 0$

3

Input Distribution

Define (X, Y, D) such that X and Y are independent conditioned on D
Dist(X, Y) = 0

$$D = (S,T) \qquad T = (u,v) \sim \eta_0$$



Transcript Wave Function

Let $\pi(x, y) = \text{prob.}$ distrib. over transcripts on a fixed input (x, y)

- $\pi(x, y)_{\tau}$ = prob. that the transcript equals τ
- $\pi(x, y)$ belongs to the unit simplex

3. 3

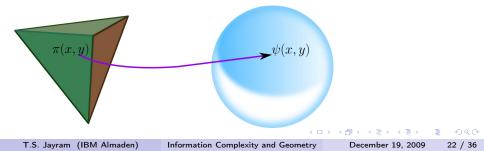
Transcript Wave Function

Let $\pi(x, y) = \text{prob.}$ distrib. over transcripts on a fixed input (x, y)

- $\pi(x, y)_{\tau}$ = prob. that the transcript equals τ
- $\pi(x, y)$ belongs to the unit simplex

Definition (Transcript wave function $\psi(x, y)$)

- $\psi(x, y)_{\tau} = \sqrt{\pi(x, y)_{\tau}} \quad \forall \tau.$
- $\psi(x, y)$ belongs to the *positive orthant* of the *unit sphere*



Definition (Hellinger Distance)

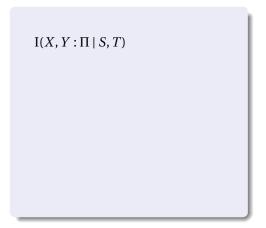
The square of the Hellinger distance between two transcript wave functions $\psi(x, y)$ and $\psi(x', y')$ is defined as $\|\psi(x, y) - \psi(x', y')\|$.

Definition (Hellinger Distance)

The square of the Hellinger distance between two transcript wave functions $\psi(x, y)$ and $\psi(x', y')$ is defined as $\|\psi(x, y) - \psi(x', y')\|$.

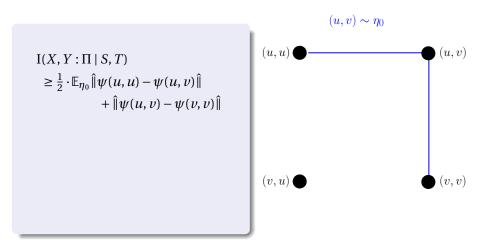
Proposition (Information Cost to Hellinger distance)

 $I(X, Y: \Pi \mid D) \ge \frac{1}{2} \cdot \mathbb{E}_{(u,v) \sim \eta_0} \| \psi(u,u) - \psi(u,v) \| + \| \psi(u,v) - \psi(v,v) \|$



T.S. Jayram (IBM Almaden) Information Complexity and Geometry December 19, 2009 24 / 36

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで



(Information Cost to Hellinger distance)

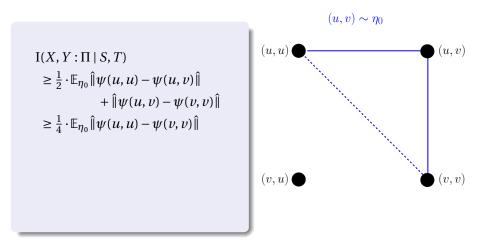
T.S. Jayram (IBM Almaden)

Information Complexity and Geometry

December 19, 2009

B> B

24 / 36



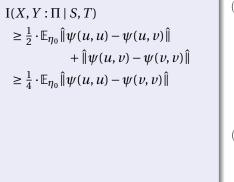
(Cauchy-Schwartz + Triangle Inequality)

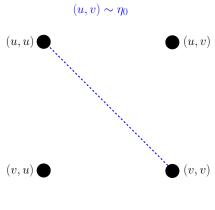
T.S. Jayram (IBM Almaden)

Information Complexity and Geometry

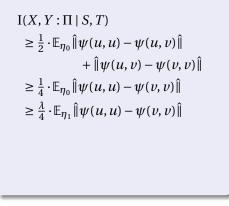
December 19, 2009

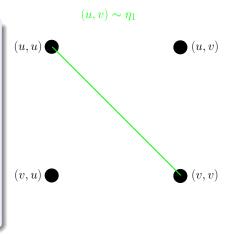
э





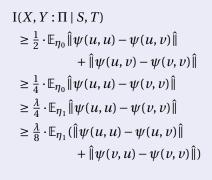
B> B

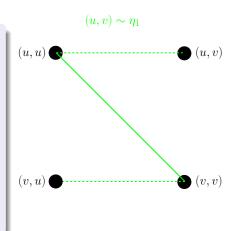




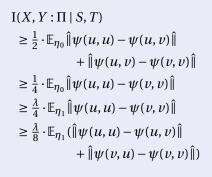
э

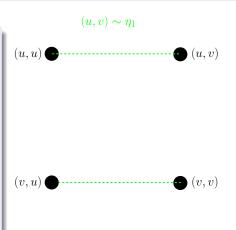
(Poincaré inequality: $\rho(u) = \psi(u, u)$)





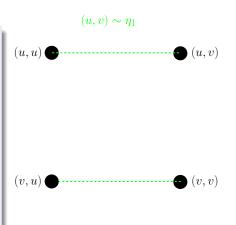
(Pythogorean Property of Communication Protocols [BJKS])





э

$$\begin{split} \mathrm{I}(X,Y:\Pi \mid S,T) \\ &\geq \frac{1}{2} \cdot \mathbb{E}_{\eta_0} \left\| \psi(u,u) - \psi(u,v) \right\| \\ &\quad + \left\| \psi(u,v) - \psi(v,v) \right\| \\ &\geq \frac{1}{4} \cdot \mathbb{E}_{\eta_0} \left\| \psi(u,u) - \psi(v,v) \right\| \\ &\geq \frac{\lambda}{4} \cdot \mathbb{E}_{\eta_1} \left\| \psi(u,u) - \psi(v,v) \right\| \\ &\geq \frac{\lambda}{8} \cdot \mathbb{E}_{\eta_1} (\left\| \psi(u,u) - \psi(v,v) \right\| \\ &\quad + \left\| \psi(v,u) - \psi(v,v) \right\|) \\ &\geq \frac{\lambda}{8} \end{split}$$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

(Soundness)

Part III

The And problem

T.S. Jayram (IBM Almaden) Information Complexity and Geometry December 19, 2009 25 / 36

< ∃→

æ

The *t*-party And problem

- Player P_i holds a *single* bit x_i , i = 1..t
- Promise:

Yes instance: *every* player's bit is set to 1 No instance: *at most one* player's bit is set to 1

- Introduced in [Bar-Yossef, Jayram, Kumar and Sivakumar]
 - For proving multi-party set disjointness [Alon, Matias, and Szegedy] lower bounds via a direct-sum theorem
 - Yields space lower bounds for frequency moments in data streams

- Introduced in [Bar-Yossef, Jayram, Kumar and Sivakumar]
 - For proving multi-party set disjointness [Alon, Matias, and Szegedy] lower bounds via a direct-sum theorem
 - Yields space lower bounds for frequency moments in data streams
- [BJKS] proved a lower bound of $\Omega(1/t^2)$
 - Improved to $\Omega(1/t^{1+\varepsilon})$, for any $\varepsilon > 0$, for one round communication

- Introduced in [Bar-Yossef, Jayram, Kumar and Sivakumar]
 - For proving multi-party set disjointness [Alon, Matias, and Szegedy] lower bounds via a direct-sum theorem
 - Yields space lower bounds for frequency moments in data streams
- [BJKS] proved a lower bound of $\Omega(1/t^2)$
 - Improved to $\Omega(1/t^{1+\varepsilon})$, for any $\varepsilon > 0$, for one round communication
- [Chakrabarti, Khot, and Sun] gave a $\Omega(1/(t \log t))$ bound for general communication and a $\Omega(1/t)$ bound for 1-round communication

Theorem ([Gronemeier])

The information complexity of And for general communication is $\Omega(1/t)$.

B> B

Conditioning: Choose index D uniformly from [1...t].

Input: O Choose X_D uniformly from $\{0, 1\}$ O Set $X_j = 0$ for all $j \neq D$

э

Conditioning: Choose index D uniformly from [1..t].

Input: O Choose X_D uniformly from $\{0, 1\}$ O Set $X_j = 0$ for all $j \neq D$

1 X_1, X_2, \dots, X_t are jointly independent conditioned on D

 $X_1 \wedge X_2 \wedge \dots \wedge X_t = 0$

э

Information Cost to Hellinger distance:

$$I(X_1, X_2, ..., X_t : \Pi \mid D) \ge \frac{1}{t} \sum_{i=1}^t \|\psi(\phi) - \psi(\{i\})\|$$

Note: bit-vectors of length $t \equiv$ subsets of [1..t]

Lemma

Let $t = 2^k$.

$$\sum_{i=1}^t \left\| \psi(\emptyset) - \psi(\{i\}) \right\| \ge \left\| \psi(\emptyset) - \psi([1..t]) \right\| \cdot \prod_{\ell=1}^k \left(1 - \frac{1}{2^\ell} \right),$$

э.

イロト イポト イヨト イヨト

Information Cost to Hellinger distance:

$$I(X_1, X_2, ..., X_t : \Pi \mid D) \ge \frac{1}{t} \sum_{i=1}^t \|\psi(\phi) - \psi(\{i\})\|$$

Note: bit-vectors of length $t \equiv$ subsets of [1..t]

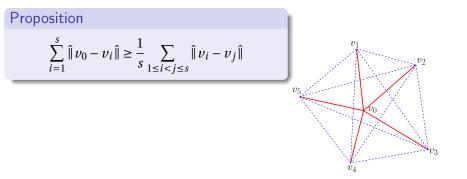
Lemma

Let $t = 2^k$.

$$\sum_{i=1}^t \left\| \psi(\emptyset) - \psi(\{i\}) \right\| \ge \left\| \psi(\emptyset) - \psi([1..t]) \right\| \cdot \prod_{\ell=1}^k \left(1 - \frac{1}{2^\ell} \right),$$

•
$$\|\psi(\phi) - \psi([1..t])\| = \Omega(1)$$
 (soundness)
• $\prod_{\ell=1}^{k} (1 - \frac{1}{2^{\ell}}) = 0.288788...$ as $k \to \infty$ (digital search tree constant)
T.S. Jayram (IBM Almaden) Information Complexity and Geometry December 19, 2009 30 / 36

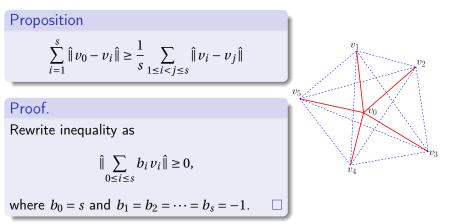
Star Property—a Negative-Type Inequality



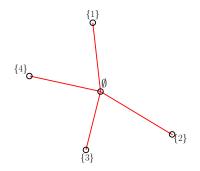
T.S. Jayram (IBM Almaden) Information Complexity and Geometry December 19, 2009 31 / 36

< 注→ 注

Star Property—a Negative-Type Inequality



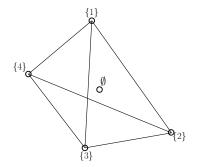
$$\sum_{i=1}^{2^k} \|\psi(\phi) - \psi(\{i\})\|$$



(日) (同) (三) (三)

3

$$\begin{split} &\sum_{i=1}^{2^{k}} \|\psi(\phi) - \psi(\{i\})\| \\ &\geq \frac{1}{2^{k}} \sum_{1 \leq i < j \leq 2^{k}} \|\psi(\{i\}) - \psi(\{j\})\| \end{split}$$

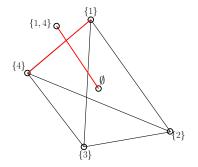


3. 3

(Star property)

$$\sum_{i=1}^{2^{k}} \|\psi(\phi) - \psi(\{i\})\|$$

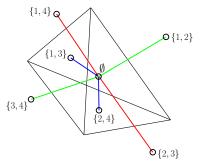
$$\geq \frac{1}{2^{k}} \sum_{1 \le i < j \le 2^{k}} \|\psi(\{i\}) - \psi(\{j\})\|$$



∃ →

 $\left(\mathsf{Cut-and-paste} \ [\mathsf{BJKS}]: \ \|\psi(A) - \psi(B)\| = \|\psi(A \cap B) - \psi(A \cup B)\|\right)$

$$\begin{split} &\sum_{i=1}^{2^{k}} \|\psi(\emptyset) - \psi(\{i\})\| \\ &\geq \frac{1}{2^{k}} \sum_{1 \leq i < j \leq 2^{k}} \|\psi(\{i\}) - \psi(\{j\})\| \\ &= \frac{1}{2^{k}} \sum_{1 \leq i < j \leq 2^{k}} \|\psi(\emptyset) - \psi(\{i, j\})\| \end{split}$$



 $\left(\mathsf{Cut-and-paste} \ [\mathsf{BJKS}]: \ \|\psi(A) - \psi(B)\| = \|\psi(A \cap B) - \psi(A \cup B)\|\right)$

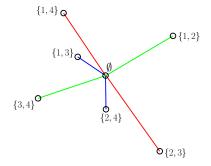
T.S. Jayram (IBM Almaden) Info

Information Complexity and Geometry

< □ > < ≥ > < ≥ >
 December 19, 2009

▶ ≣ ∽へで 009 32/36

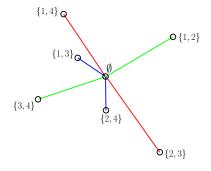
$$\begin{split} &\sum_{i=1}^{2^{k}} \|\psi(\emptyset) - \psi(\{i\})\| \\ &\geq \frac{1}{2^{k}} \sum_{1 \leq i < j \leq 2^{k}} \|\psi(\{i\}) - \psi(\{j\})\| \\ &= \frac{1}{2^{k}} \sum_{1 \leq i < j \leq 2^{k}} \|\psi(\emptyset) - \psi(\{i, j\})\| \end{split}$$



æ

∃ ⊳

$$\begin{split} &\sum_{i=1}^{2^{k}} \|\psi(\emptyset) - \psi(\{i\})\| \\ &\geq \frac{1}{2^{k}} \sum_{1 \leq i < j \leq 2^{k}} \|\psi(\{i\}) - \psi(\{j\})\| \\ &= \frac{1}{2^{k}} \sum_{1 \leq i < j \leq 2^{k}} \|\psi(\emptyset) - \psi(\{i, j\})\| \\ &\vdots \\ &\geq \|\psi(\emptyset) - \psi([1..t])\| \cdot \prod_{\ell=1}^{k} \left(1 - \frac{1}{2^{\ell}}\right) \end{split}$$



돈 돈

(Induction)

Part IV

Future Directions

T.S. Jayram (IBM Almaden) Information Complexity and Geometry December 19, 2009 33 / 36

イロト イポト イヨト イヨト

3

- The techniques exploit the geometry of Hellinger distance and communication protocols
- Applications:
 - Lower bounds for data streams [Jayram and Woodruff]
 - Sketching edit distance [Andoni, Jayram and Patrascu]
 - Communication complexity of functions in AC⁰ (aka And-Or trees) [Jayram,Kopparty and Raghavendra]
- What about number-on-forehead?

- The techniques exploit the geometry of Hellinger distance and communication protocols
- Applications:
 - Lower bounds for data streams [Jayram and Woodruff]
 - Sketching edit distance [Andoni, Jayram and Patrascu]
 - Communication complexity of functions in AC⁰ (aka And-Or trees) [Jayram,Kopparty and Raghavendra]
- What about number-on-forehead?
 - Consider multi-party set-disjointness
 - Best bounds of the form $\Omega(n^{1/k}/f(k))$ [Lee and Shraibman; Chattopadhyay and Ada; Beame and Huynh-Ngoc]
 - Can one hope to prove a $\Omega(n/f(k))$ bound?

- Define information cost as $\sum_{i} I(X_i : \Pi \mid X_{-i}, R_{-i}, D)$
- Direct sum works with this definition!
- Big unknown: the information complexity of And?

3. 3

Questions/Comments?

T.S. Jayram (IBM Almaden) Information Complexity and Geometry December 19, 2009 36 / 36

(日) (同) (三) (三)

æ