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“Communication does not signify a problem newly discovered in
our times, but a fashion of thinking and a method of analyzing
which we apply in the statement of all fundamental problems.”

Richard McKeon (1957)
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Communication (CS Theory Version)

Multi-party Communication
There are t ≥ 2 players P1,P2, . . . ,Pt

The input is a tuple (x1, x2, . . . , xt )

Pi holds xi (number-in-hand)

The protocol specifies the rules for
writing messages (on a blackboard)

Players can use private random coins

The message transcript depends on
both the input and randomness
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Communication Complexity

Quantify the necessary amount of communication needed to solve a
communication problem.

Many ways to measure communication:
1 Length of communication, i.e. #bits in the transcript

2 Rounds of communication

3 Asymmetric communication

How much information about the inputs is contained in Π?
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Set Disjointness

Alice’s input is a set x ⊆ [1..n]

Bob’s input is a set y ⊆ [1..n]

Communication problem: are the sets are disjoint?

Disj(x, y) =
n∨

j=1
(x j ∧ y j )
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L∞ estimation

Inputs are x, y ∈Rn

`∞ norm ‖a‖∞ = maxi |ai |
Threshold t , approximation α≥ 1

Is ‖x − y‖∞ at most t or greater than αt?

GapL∞ and Dist

For each coordinate j :
1 |x j − y j | ≤ t =⇒ Dist(x j , y j ) = 0, or
2 |x j − y j | >αt =⇒ Dist(x j , y j ) = 1

GapL∞(x, y) =
n∨

j=1
Dist(x j , y j )
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Direct Sum

Given two decision problems f and g :

f (x, y) =
n∨

j=1
g (x j , y j )

Can we relate the communication complexity of f to that of g?

Direct Sum
Is CC ( f ) ≥ n ·CC (g )?

Difficult to prove by directly analyzing the transcript
Maybe information theory can help . . .
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Information Theory Notions

Conditional Entropy: H(X | Y ) is the uncertainty in X conditioned on Y

Mutual Information: I(X : Y ) = H(X )−H(X | Y ) is the reduction in
uncertainty of X when conditioned on Y

Conditional Mutual Information: I(X : Y | Z ) = H(X | Z )−H(X | Y , Z )
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Information Cost/Complexity

Let Π be the transcript of a t-player protocol on input x1, x2, . . . , xt .

Definition
The information cost of a protocol equals

I(X1, X2, . . . , X t :Π | D),

where X1, X2, . . . , X t are jointly independent conditioned on D.

Information Complexity IC( f ): the minimum information cost of a protocol
that correctly computes f

[Chakrabarti, Shi, Wirth and Yao], [Bar-Yossef, Jayram, Kumar and Sivakumar]
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Direct Sum Theorem

Theorem
Suppose f can be written as an OR of n disjoint instances of g . Then,

IC( f ) ≥ n · IC(g ).

Since CC ( f ) ≥ IC( f ), we can prove lower bounds on CC ( f ) by proving
lower bounds on IC(g ).
However, the support of the input distribution of g is on the
0-instances of g !

Leads to interesting connections between information complexity and the
geometry of communication.

T.S. Jayram (IBM Almaden) Information Complexity and Geometry December 19, 2009 13 / 36



Part II

Distance Estimation
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Distance Estimation

A metric space M with distance function d(·, ·)
Alice holds x ∈ M ; Bob holds y ∈ M

Threshold t ; approximation α≥ 1

Promise problem Dist:
No instance: d(x, y) ≤ t (Close)
Yes instance: d(x, y) >αt (Far)

M

Goal
Prove a lower bound on the information complexity of Dist
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Metric Embeddings

Notation: Let ‖̂·‖̂ = 1
2‖·‖2.

Let ρ be an embedding of M into Euclidean space `2

Suppose d(x, y) = ‖̂ρ(x)−ρ(y)‖̂, for all x, y ∈ M (Isometry)
Then, ρ separates the close and far instances of Dist

How does one show that such an embedding does not exist?
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Poincaré-Type Inequalities

Definition (Poincaré Inequality)
1 distribution η0 on close instances
2 distribution η1 on far instances
3 parameter λ

A Poincaré inequality holds for Dist if for all ρ : M → `2:

E(x,y)∼η0 ‖̂ρ(x)−ρ(y)‖̂ ≥λ ·E(x,y)∼η1 ‖̂ρ(x)−ρ(y)‖̂

1 λ≥ 1/α=⇒ no isometric embeddings exist
2 with larger λ, can also consider embeddings with distortion
3 with smaller λ, we can still say something interesting!
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Examples of Poincaré Inequalities

1 Let η0 = unif. distrib. on {0,1, . . . ,m −1}. 0 1 m2

Ex∼η0 ‖̂ρ(x)−ρ(x +1)‖̂ ≥ 1
m · ‖̂ρ(0)−ρ(m)‖̂

2 Hamming cube {0,1}d :

η0/η1 = unif. distrib. on the edges/diagonals

E(x,y)∼η0 ‖̂ρ(x)−ρ(y)‖̂ ≥ 1
d ·E(x,y)∼η1 ‖̂ρ(x)−ρ(y)‖̂

Implies that the Hamming cube does not embed into `1

3 [Andoni,Krauthgamer] proved a Poincaré inequality for edit distance and
used it to prove communication vs. approximation tradeoff.

4 Expanders: Poincaré inequality with λ= normalized spectral gap.
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Information Complexity of Dist

Theorem ([Andoni, Jayram and Patrascu])
Suppose Dist satisfies a Poincaré inequality w.r.t. distributions η0, η1, and
parameter λ. Then,

IC(Dist) ≥ λ

8
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History

[Bar-Yossef, Jayram, Kumar and Sivakumar] proved this result for M =R.
Yields space lower bounds for estimating `∞ in a data stream

[Jayram and Woodruff] proved this result for the Hamming cube

Yields space lower bounds estimating cascaded norms Lk ◦L0

Our result implies improved lower bounds for sketching edit distance:
Ω(loglogd) =⇒Ω(logd).
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Input Distribution

1 Define (X ,Y ,D) such that X and Y are independent conditioned on D

2 Dist(X ,Y ) = 0

‘A’ ‘B’

v u

u v u v

D = (S, T )

(u, v) (v, v) (u, u) (u, v)

X

S

Y

Y

X

T = (u, v) ∼ �0
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Transcript Wave Function

Let π(x, y) = prob. distrib. over transcripts on a fixed input (x, y)

π(x, y)τ = prob. that the transcript equals τ
π(x, y) belongs to the unit simplex

Definition (Transcript wave function ψ(x, y))

ψ(x, y)τ =
√
π(x, y)τ ∀τ.

ψ(x, y) belongs to the positive orthant of the unit sphere

�(x, y)  (x, y)
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Hellinger Distance

Definition (Hellinger Distance)
The square of the Hellinger distance between two transcript wave functions
ψ(x, y) and ψ(x ′, y ′) is defined as ‖̂ψ(x, y)−ψ(x ′, y ′)‖̂.

Proposition (Information Cost to Hellinger distance)

I(X ,Y :Π | D) ≥ 1
2 ·E(u,v)∼η0 ‖̂ψ(u,u)−ψ(u, v)‖̂+ ‖̂ψ(u, v)−ψ(v, v)‖̂
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Proof

I(X ,Y :Π | S,T )

≥ 1
2 ·Eη0 ‖̂ψ(u,u)−ψ(u, v)‖̂

+ ‖̂ψ(u, v)−ψ(v, v)‖̂
≥ 1

4 ·Eη0 ‖̂ψ(u,u)−ψ(v, v)‖̂
≥ λ

4 ·Eη1 ‖̂ψ(u,u)−ψ(v, v)‖̂
≥ λ

8 ·Eη1 (‖̂ψ(u,u)−ψ(u, v)‖̂
+ ‖̂ψ(v,u)−ψ(v, v)‖̂)

≥ λ
8
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Proof
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Proof
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(u, v) ∼ �1

(u, u) (u, v)

(v, v)(v, u)

(Soundness)
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Part III

The And problem
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The t -party And problem

Player Pi holds a single bit xi , i = 1..t

Promise:
Yes instance: every player’s bit is set to 1
No instance: at most one player’s bit is set to 1
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History

Introduced in [Bar-Yossef, Jayram, Kumar and Sivakumar]
For proving multi-party set disjointness [Alon, Matias, and Szegedy]
lower bounds via a direct-sum theorem
Yields space lower bounds for frequency moments in data streams

[BJKS] proved a lower bound of Ω(1/t 2)
Improved to Ω(1/t 1+ε), for any ε> 0, for one round communication

[Chakrabarti, Khot, and Sun] gave a Ω(1/(t log t )) bound for general
communication and a Ω(1/t ) bound for 1-round communication
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Result

Theorem ([Gronemeier])
The information complexity of And for general communication is Ω(1/t ).
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Input Distribution

Conditioning: Choose index D uniformly from [1..t ].

Input: 1 Choose XD uniformly from {0,1}
2 Set X j = 0 for all j 6= D

1 X1, X2, . . . , X t are jointly independent conditioned on D

2 X1 ∧X2 ∧·· ·∧X t = 0
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Proof

Information Cost to Hellinger distance:

I(X1, X2, . . . , X t :Π | D) ≥ 1

t

t∑
i=1

‖̂ψ(;)−ψ({i })‖̂

Note: bit-vectors of length t ≡ subsets of [1..t ]

Lemma
Let t = 2k .

t∑
i=1

‖̂ψ(;)−ψ({i })‖̂ ≥ ‖̂ψ(;)−ψ([1..t ])‖̂ ·
k∏
`=1

(
1− 1

2`

)
,

1 ‖̂ψ(;)−ψ([1..t ])‖̂ =Ω(1) (soundness)

2
∏k
`=1

(
1− 1

2`
)= 0.288788. . . as k →∞ (digital search tree constant)
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Star Property—a Negative-Type Inequality

Proposition
s∑

i=1
‖̂v0 − vi ‖̂ ≥ 1

s

∑
1≤i< j≤s

‖̂vi − v j ‖̂

Proof.
Rewrite inequality as

‖̂ ∑
0≤i≤s

bi vi ‖̂ ≥ 0,

where b0 = s and b1 = b2 = ·· · = bs =−1.

v1

v2

v3

v4

v5

v0
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Proof of Technical Lemma

2k∑
i=1

‖̂ψ(;)−ψ({i })‖̂

≥ 1

2k

∑
1≤i< j≤2k

‖̂ψ({i })−ψ({ j })‖̂

= 1

2k

∑
1≤i< j≤2k

‖̂ψ(;)−ψ({i , j }‖̂

...

≥ ‖̂ψ(;)−ψ([1..t ])‖̂ ·
k∏
`=1

(
1− 1

2`

)

{4}

{1}

{2}

{3}

∅
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)

{4}

{1}

{2}

{3}

∅

{1, 4}

(Cut-and-paste [BJKS]: ‖̂ψ(A)−ψ(B)‖̂ = ‖̂ψ(A∩B)−ψ(A∪B)‖̂)
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2k∑
i=1

‖̂ψ(;)−ψ({i })‖̂

≥ 1

2k

∑
1≤i< j≤2k

‖̂ψ({i })−ψ({ j })‖̂

= 1

2k

∑
1≤i< j≤2k

‖̂ψ(;)−ψ({i , j }‖̂

...

≥ ‖̂ψ(;)−ψ([1..t ])‖̂ ·
k∏
`=1

(
1− 1

2`

)

{1, 4}

{1, 2}

{2, 3}

{2, 4}
{3, 4}

{1, 3}
∅

T.S. Jayram (IBM Almaden) Information Complexity and Geometry December 19, 2009 32 / 36



Proof of Technical Lemma
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...

≥ ‖̂ψ(;)−ψ([1..t ])‖̂ ·
k∏
`=1

(
1− 1

2`

)

{1, 4}
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{2, 3}

{2, 4}
{3, 4}

{1, 3}
∅

(Induction)
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Part IV

Future Directions
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Conclusion

The techniques exploit the geometry of Hellinger distance and
communication protocols

Applications:
Lower bounds for data streams [Jayram and Woodruff]
Sketching edit distance [Andoni, Jayram and Patrascu]
Communication complexity of functions in AC0 (aka And-Or trees)
[Jayram,Kopparty and Raghavendra]

What about number-on-forehead?

Consider multi-party set-disjointness
Best bounds of the form Ω(n1/k / f (k)) [Lee and Shraibman;
Chattopadhyay and Ada; Beame and Huynh-Ngoc]
Can one hope to prove a Ω(n/ f (k)) bound?
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A Possible Approach

Define information cost as
∑

i I(Xi :Π | X−i ,R−i ,D)

Direct sum works with this definition!
Big unknown: the information complexity of And?
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Questions/Comments?
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