The Power of Online Reordering

Matthias Westermann University of Bonn

Online algorithms

- They are used in practice for a potentially infinite run-time.
- During run-time, new requests for service are permanently issued, e.g.:
 - Routing requests for data packets in a network
 - Access requests in a storage system
- They are crucial for ambitious computer applications processing huge amounts of data with increasingly complex hardware.

Online model

An online algorithm gets to know the input sequence of requests for service incrementally, one request at a time, without knowledge about the future.

Classic model: A new request is not issued until the previous one is served.

Online reordering paradigm

In real applications, request can usually be delayed for a short amount of time.

As a consequence, the input sequence of requests can be reordered in a limited fashion in order to optimize the performance.

Application: Rendering in computer graphics

- □ Given: Sequence of primitives with state changes (consecutive primitives differ in their attribute values).
- Objective: Reorder the sequence of primitives in such a way that the number of state changes is reduced.

Applications

Rendering in computer graphics
 Paint shop in car manufacturing
 Disk scheduling
 Machine scheduling

Online reordering paradigm

Buffer can be used to reorder the input:

- Buffer contains the first k requests of the input that are not serviced so far.
- Online algorithm selects a request contained in the buffer for service.
- □ Thereafter the next request in the input takes the place of the serviced request.

Competitive analysis

Comparison

- Online algorithm (without knowledge about the future)
- Offline algorithm (knows the whole input in advance)
- An online algorithm is c-competitive, if its cost are at most c times the cost of an optimal offline algorithm.

Reordering buffers for general metric spaces

- Input sequence: Points in a metric space.
- Objective: Move the server to the points such that the total traveled distance is minimized.

Lower bound for shortest distance first

input sequence
online output (k=4)
optimal output (k=4)

No memoryless algorithm can achieve a competitive ratio of o(k) [Khandekar, Pandit STACS'06].

Approximation of metric spaces

- Tree metric space: Shortest path metric induced by a tree.
- Each n-point metric space can randomly be approximated by tree metric spaces with an approximation ratio of O(log n) [Fakcharoenphol, Rao, Talwar STOC'03].
- We only need an algorithm for (hierarchical well-separated) trees.

Our results [Englert, Räcke, W. STOC'07]

- Algorithm for general trees: Competitive ratio O(D log k).
- Randomized algorithm for general n-point metric spaces: Competitive ratio O(log n log² k).

Open questions

- Can the competitive ratio be reduced to O(ploylog k) for line metric spaces or arbitrary trees?
- Can the competitive ratio be reduced to O(1) for any non-trivial metric space?
- Can the competitive ratio be reduced to O(polylog k) for general metric spaces?

Minimum makespan scheduling

Input sequence: Jobs with processing times.

Objective: Assign the jobs to m parallel machines without preemption such that the makespan is minimized.

m identical machines: Previous work (no reordering)

- 1.986 [Bartal, Fiat, Karloff, Vohra STOC'92]
 1.945 [Karger, Phillips, Torng SODA'94]
 1.923 [Albers STOC'97]
 1.920 [Fleischer, Wahl ESA'00]
- □ 1.880 [Rudin PhDThesis'01]
- □ 1.853 [Gormley et al. SODA'00]
- □ 1.852 [Albers STOC'97]
- □ 1.837 [Bartal, Karloff, Rabani IPL'94]

Values of r_m

m identical machines: Overview

m	our results reordering buffer	lower bounds no reordering	upper bounds no reordering
2	1.3333	1.5	1.5
3	1.3636	1.6667	1.6667
4	1.375	1.7321	1.7333
$\rightarrow \infty$	1.4659	1.8800	1.9201

m identical machines: The lower bound of r_m

- Assume for contradiction that algorithm A achieves a competitive ratio r < r_m with a buffer of size k.
- \Box 1/ ε +k jobs of size ε arrive.

m identical machines: The lower bound of r_m

- □ There exists a machine M_j with load $\ge w_j$.
- □ If $w_j = r_m/m$, no more jobs arrive.

- Optimal makespan $\leq (1+k\cdot\epsilon)/m+\epsilon = (1+(k+m)\cdot\epsilon)/m$.
- Competitive ratio of A $\geq r_m/(1+(k+m)\cdot\epsilon) > r.$

m identical machines: The lower bound of r_m

If w_j = (r_m-1)/j, (m-j) large jobs of size 1/j arrive.

- Optimal makespan $\leq (1+k\cdot\varepsilon)/j+\varepsilon = (1+(k+j)\cdot\varepsilon)/j.$
- If A schedules two large jobs on the same machine, competitive ratio of A ≥ 2/(1+(k+j)⋅ε) > r.
- Otherwise, i.e., A schedules at least one of the large jobs on a machine with load $\geq (r_m-1)/j$, competitive ratio of A $\geq r_m/(1+(k+j)\cdot\epsilon) > r$.

□ When a new job arrives:

- Store this job in the buffer and remove a job J of smallest size from the buffer.
- Schedule J on a machine M_i with load $\leq w_i \cdot (T+m \cdot p(J)) p(J)$.

m identical machines: The optimal algorithm

Efficient final phase:

Schedule virtually some of the remaining jobs on m empty machines according to LPT.

Abort when the makespan is at least three times the size of the smallest job assigned so far.

- Schedule the jobs from the virtual machines on the real machines.
- Schedule the remaining jobs according to Greedy.

m identical machines: Further results

- □ Lower bounds of $3/2 > r_m$, if the buffer size is at most $\lfloor m/2 \rfloor$.
- □ Lower bound of $1+1/2^{1/2} \approx 1.7071$, if the buffer size is at most $\lfloor m/8 \rfloor$.
- □ Algorithms for different buffer sizes:

competitive ratio	buffer size	
3/2	\approx 1.6197·m+1	
$(1+r_m)/2 \approx 1.733$	m+1	
2-1/(m-k+1)	k ∈ [1,(m+1)/2]	

m related machines: Our result

Scheduling algorithm achieving the competitive ratio 2 with a buffer of size m.

our result	lower bound	upper bound
reordering buffer	no reordering	no reordering
2	2.438	5.828

m related machines: The algorithm

□ When a new job arrives:

- Store this job in the buffer and remove a job J of smallest size from the buffer.
- Schedule J on a machine M_i with load $\leq \alpha_i / \sum \alpha_j \cdot (T + m \cdot p(J)) p(J)$.
- □ After all jobs have arrived:
 - Schedule the remaining jobs optimally speed of M. total scheduled load on m corresponding empty machines.
 - Schedule the jobs from the virtual machines on the respective real machines.

m related machines: Analysis

□ At the end of the arrival phase, the completion time of machine M_i is $\leq 1/\sum \alpha_j \cdot (T+(m-1) \cdot p(J_i))$

< OPT.

□ In the final phase the completion time of each virtual machine is at most OPT.

Open questions

Our algorithm for identical machines achieves the optimal competitive ratio. What buffer size is necessary to obtain this result?

 $\lfloor m/2 \rfloor \leq ... \leq \lceil (1+2/r_m) \cdot m \rceil + 2$

- Can our result for related machines be improved or can a better lower bound be shown in this case?
- Reordering for other scheduling problems?