The Power of
Online Reordering

Matthias Westermann
University of Bonn

Online algorithms

They are used in practice for a potentially
infinite run-time.

During run-time, new requests for service
are permanently issued, e.q.:

B Routing requests for data packets in a network
B Access requests in a storage system

They are crucial for ambitious computer
applications processing huge amounts of
data with increasingly complex hardware.

Matthias Westermann

Online model

An online algorithm gets to know the
input sequence of requests for service
incrementally, one request at a time,
without knowledge about the future.

Classic model:
A new request is not issued
until the previous one is served.

Matthias Westermann

Online reordering paradigm

In real applications,
request can usually be delayed
for a short amount of time.

AS a conseguence,

the input sequence of requests

can be reordered in a limited fashion
in order to optimize the performance.

Matthias Westermann

Application:
Rendering in computer graphics

sequence of primitives buffer graphics hardware

O >[I e e

Given: Sequence of primitives with state
changes (consecutive primitives differ in
their attribute values).

Objective: Reorder the sequence of
primitives in such a way that the number of
state changes is reduced.

Matthias Westermann

Applications

Rendering in computer graphics
Paint shop in car manufacturing
Disk scheduling

Machine scheduling

Matthias Westermann

Online reordering paradigm

input sequence) [T T T] =) output sequence

buffer size k

Buffer can be used to reorder the input:

Buffer contains the first k requests of the
input that are not serviced so far.

Online algorithm selects a request
contained in the buffer for service.

Thereafter the next request in the input
takes the place of the serviced request.

Matthias Westermann

Competitive analysis

Comparison

B Online algorithm
(without knowledge about the future)

B Offline algorithm

(knows the whole input in advance)
An online algorithm is c-competitive,
if its cost are at most c times the cost
of an optimal offline algorithm.

Matthias Westermann

Reordering buffers
for general metric spaces

input sequence

output sequence (k=4)

..

Input sequence: Points in a metric space.

Objective: Move the server to the points
such that the total traveled distance is
minimized.

size

Matthias Westermann

Lower bound
for shortest distance first

input sequence

online output (k=4)
000 O
optimal output (k=4)

No memoryless algorithm
can achieve a competitive ratio of o(k)
[Khandekar, Pandit STACS'06].

Matthias Westermann

Approximation of metric spaces

Tree metric space:
Shortest path metric induced by a tree.

Each n-point metric space can randomly
be approximated by tree metric spaces
with an approximation ratio of O(log n)
[Fakcharoenphol, Rao, Talwar STOC'03].

We only need an algorithm
for (hierarchical well-separated) trees.

Matthias Westermann

Our results [Englert, Racke, W. STOC'07]

Algorithm for general trees:
Competitive ratio O(D log k).
Improved an IS

for hier rclntfpahwmlétsle@ramaiaéetre S:
Competiti

Randomized algorithm

for general n-point metric spaces:
Competitive ratio O(log n log? k).

Matthias Westermann

Open questions

Can the competitive ratio be reduced
to O(ploylog k) for line metric spaces
or arbitrary trees?

Can the competitive ratio be reduced
to O(1) for any non-trivial metric
space?

Can the competitive ratio be reduced
to O(polylog k) for general metric
spaces?

Matthias Westermann

Minimum makespan scheduling

I:II:||:| —> EHDHD makespan

Input sequence: Jobs with processing times.

Objective: Assign the jobs
to m parallel machines without preemption
such that the makespan is minimized.

Matthias Westermann

m identical machines:
Previous work (no reordering)

1.986
1.945
1.923
1.920

1.880
1.853
1.852
1.837

‘Bartal, Fiat, Karloff, Vohra STOC'92]
'Karger, Phillips, Torng SODA’94]
'Albers STOC'97]

'Fleischer, Wahl ESA'00]

'Rudin PhDThesis’01]
‘Gormley et al. SODA’00]
'Albers STOC'97]

Bartal, Karloff, Rabani IPL'94]

Matthias Westermann

m identical machines:
Our main results [Englert, Ozmen, W. FOCS’08]

Lower bound of r_, if the size of the buffer
does not depend on the input sequence.
mr,=4/3

B [im

= LambertW_,(-1/e?)
/(1+LambertW_;(-1/e?))

~ 1.4659
Scheduling@g é@
bound wit f’tﬁ%

0 0 Ea
o [1 | —

m lim,,., 1+2/r ~2.36

m—o0 rm

Matthias Westermann

Values of r .

competitive ratio

1.48
1.46
1.44
1.42

1.4
1.38
1.36
1.34
1.32

20 30 40 50 60

Matthias Westermann

m identical machines:

Overview
our results lower bounds upper bounds
m _ . :
reordering buffer no reordering no reordering
2 1.3333 1.5 1.5
3 1.3636 1.6667 1.6667
4 1.375 1.7321 1.7333

— 00 1.4659 1.8800 1.9201

Matthias Westermann

m identical machines:
The lower bound of r,

Assume for contradiction
that algorithm A achieves a competitive
ratio r < r, with a buffer of size k.

1/e+k jobs of size € arrive.

r,, is the
solution to
2w; = 1.

M, M

m-1

Matthias Westermann

m identical machines:
The lower bound of r,

[here exists a machine Mj
with load > W;.

IFw; = rey/m, Ij_ﬂﬁh
Nno more jobs arrive.

B Optimal makespan
< (1+k-e€)/m+e = (1+(k+m)-e)/m.

B Competitive ratio of A
>r /(1+(k+m)e) > r.

Matthias Westermann

m identical machines:
The lower bound of r,

If w, = (r,-1)/j,
(m-j) large jobs |:|
of size 1/j arrive.

B Optimal makespan
< (1+k-€)/j+e = (1+(k+j)-€)/].
B If A schedules two large jobs on the same

machine,
competitive ratio of A > 2/(1+(k+j)-€) > r.

B Otherwise, i.e., A schedules at least one of the
large jobs on a machine with load > (r.,-1)/j,
competitive ratio of A > r/(1+(k+j)-€) > r.

Matthias Westermann

m identical machines:
The optimal algorithm

When a new job arrives:

B Store this job in the buffer and remove a
job J of smallest size from the buffer.

B Schedule J on a machine M, with load
< w(T+m-p(J))-p(J).

total scheduled load || size of]

Aftera oS have afrrthved.
Assumé\for contra&ctlon

B Sghedule thed@imaimiagninhsdr. the
Ui Top thifval(V+om @R p(@ohHes.

Matthias Westermann

m identical machines:
The optimal algorithm

Efficient final phase:

B Schedule virtually some of
the remaining jobs on m
empty machines according
to LPT. []

Abort when the makespan is
at least three times the size
of the smallest job assigned

so far.
B Schedule the jobs from the
virtual machines on the real

machines.
B Schedule the remaining jobs
according to Greedy. M M
0

m-1

Matthias Westermann

m identical machines:
Further results

Lower bounds of 3/2 > r_,
if the buffer size is at most |m/2].

Lower bound of 1+1/21/2 ~ 1.7071,
if the buffer size is at most |m/8].

Algorithms for different buffer sizes:

competitive ratio buffer size
3/2 ~ 1.6197-m+1
(1+r.)/2 ~ 1.733 m+1
2-1/(m-k+1) ke[1,(m+1)/2]

Matthias Westermann

m related machines:

Our result

Scheduling algorithm achieving the

competitive ratio 2 with a buffer of size m.

our result
reordering buffer

lower bound
no reordering

2.438

upper bound
no reordering

5.828

Matthias Westermann

m related machines:
The algorithm

When a new job arrives:

B Store this job in the buffer and remove
a job J of smallest size from the buffer.

B Schedule J on a machine M, with load
< oy/20y-(T+m-p(3))-p(I).

Afteri|all jobs
spaad 'of M :

machines on the respective real machines.

Matthias Westermann

m related machines:
Analysis

At the end of the arrival phase,

the completion time of machine M. is
< 1/%0;:(T+(m-1)-p(J)))

< OPT.

chéduled on M, _
virtual

machine is at most OPT.

Matthias Westermann

Open questions

Our algorithm for identical machines
achieves the optimal competitive ratio.

What buffer size is necessary to obtain this
result?
m/2| < ... <[(1+2/r,)m]|+2

Can our result for related machines be

improved or can a better lower bound be
shown in this case?

Reordering for other scheduling problems?

Matthias Westermann

