
The Power of
Online Reordering

Matthias Westermann

University of Bonn

Matthias Westermann

Online algorithms

� They are used in practice for a potentially
infinite run-time.

� During run-time, new requests for service
are permanently issued, e.g.:
� Routing requests for data packets in a network
� Access requests in a storage system

� They are crucial for ambitious computer
applications processing huge amounts of
data with increasingly complex hardware.

Matthias Westermann

Online model

� An online algorithm gets to know the
input sequence of requests for service
incrementally, one request at a time,
without knowledge about the future.

� Classic model:
A new request is not issued
until the previous one is served.

Matthias Westermann

Online reordering paradigm

� In real applications,
request can usually be delayed
for a short amount of time.

� As a consequence,
the input sequence of requests
can be reordered in a limited fashion
in order to optimize the performance.

Matthias Westermann

Application:
Rendering in computer graphics

� Given: Sequence of primitives with state
changes (consecutive primitives differ in
their attribute values).

� Objective: Reorder the sequence of
primitives in such a way that the number of
state changes is reduced.

graphics hardwaresequence of primitives buffer

Matthias Westermann

Applications

� Rendering in computer graphics

� Paint shop in car manufacturing

� Disk scheduling

� Machine scheduling

� …

Matthias Westermann

Online reordering paradigm

Buffer can be used to reorder the input:
� Buffer contains the first k requests of the
input that are not serviced so far.

� Online algorithm selects a request
contained in the buffer for service.

� Thereafter the next request in the input
takes the place of the serviced request.

buffer size k

output sequenceinput sequence

Matthias Westermann

Competitive analysis

� Comparison
� Online algorithm
(without knowledge about the future)

� Offline algorithm
(knows the whole input in advance)

� An online algorithm is c-competitive,
if its cost are at most c times the cost
of an optimal offline algorithm.

Matthias Westermann

Reordering buffers
for general metric spaces

input sequence

output sequence (k=4)

� Input sequence: Points in a metric space.
� Objective: Move the server to the points
such that the total traveled distance is
minimized.

buffer size

Matthias Westermann

Lower bound
for shortest distance first

� No memoryless algorithm
can achieve a competitive ratio of o(k)
[Khandekar, Pandit STACS’06].

input sequence

online output (k=4)

optimal output (k=4)

Matthias Westermann

Approximation of metric spaces

� Tree metric space:
Shortest path metric induced by a tree.

� Each n-point metric space can randomly
be approximated by tree metric spaces
with an approximation ratio of O(log n)
[Fakcharoenphol, Rao, Talwar STOC’03].

� We only need an algorithm
for (hierarchical well-separated) trees.

Matthias Westermann

Our results [Englert, Räcke, W. STOC’07]

� Algorithm for general trees:
Competitive ratio O(D log k).

� Improved analysis
for hierarchical well-separated trees:
Competitive ratio O(log2 k).

� Randomized algorithm
for general n-point metric spaces:
Competitive ratio O(log n log2 k).

hop-diameter of the tree

Matthias Westermann

Open questions

� Can the competitive ratio be reduced
to O(ploylog k) for line metric spaces
or arbitrary trees?

� Can the competitive ratio be reduced
to O(1) for any non-trivial metric
space?

� Can the competitive ratio be reduced
to O(polylog k) for general metric
spaces?

Matthias Westermann

Minimum makespan scheduling

� Input sequence: Jobs with processing times.
� Objective: Assign the jobs
to m parallel machines without preemption
such that the makespan is minimized.

makespan

M0 Mm-1

Matthias Westermann

m identical machines:
Previous work (no reordering)

� 1.986 [Bartal, Fiat, Karloff, Vohra STOC’92]
� 1.945 [Karger, Phillips, Torng SODA’94]
� 1.923 [Albers STOC’97]
� 1.920 [Fleischer, Wahl ESA’00]

� 1.880 [Rudin PhDThesis’01]
� 1.853 [Gormley et al. SODA’00]
� 1.852 [Albers STOC’97]
� 1.837 [Bartal, Karloff, Rabani IPL’94]

Matthias Westermann

m identical machines:
Our main results [Englert, Özmen, W. FOCS’08]

� Lower bound of rm, if the size of the buffer
does not depend on the input sequence.
� r2 = 4/3

� limm→∞ rm = LambertW-1(-1/e
2)

/(1+LambertW-1(-1/e
2))

≈ 1.4659

� Scheduling algorithm matching the lower
bound with a buffer of size ⌈(1+2/rm)·m⌉+2.
� 1+2/r2 = 2.5
� limm→∞ 1+2/rm ≈ 2.36

smallest real solution to x·ex = -1/e2

Matthias Westermann

Values of rm

 1.32

 1.34

 1.36

 1.38

 1.4

 1.42

 1.44

 1.46

 1.48

 10 20 30 40 50 60

c
o
m

p
e
ti
ti
v
e
 r

a
ti
o

m

Matthias Westermann

m identical machines:
Overview

1.92011.88001.4659→ ∞

1.73331.73211.3754

1.66671.66671.36363

1.51.51.33332

upper bounds

no reordering

lower bounds

no reordering

our results

reordering buffer
m

Matthias Westermann

m identical machines:
The lower bound of rm

� Assume for contradiction
that algorithm A achieves a competitive
ratio r < rm with a buffer of size k.

� 1/ε+k jobs of size ε arrive.

wi := min{rm/m, (rm-1)/i}

M0 Mm-1

rm is the
solution to
∑wi = 1.

Matthias Westermann

m identical machines:
The lower bound of rm

� There exists a machine Mj
with load ≥ wj.

� If wj = rm/m,
no more jobs arrive.
� Optimal makespan
	 (1+k·ε)/m+ε = (1+(k+m)·ε)/m.

� Competitive ratio of A
≥ rm/(1+(k+m)·ε) > r.

Matthias Westermann

m identical machines:
The lower bound of rm

� If wj = (rm-1)/j,
(m-j) large jobs
of size 1/j arrive.
� Optimal makespan

	 (1+k·ε)/j+ε = (1+(k+j)·ε)/j.

� If A schedules two large jobs on the same
machine,
competitive ratio of A ≥ 2/(1+(k+j)·ε) > r.

� Otherwise, i.e., A schedules at least one of the
large jobs on a machine with load ≥ (rm-1)/j,
competitive ratio of A ≥ rm/(1+(k+j)·ε) > r.

Matthias Westermann

m identical machines:
The optimal algorithm

� When a new job arrives:
� Store this job in the buffer and remove a
job J of smallest size from the buffer.

� Schedule J on a machine Mi with load
	 wi·(T+m·p(J))-p(J).

� After all jobs have arrived:
� Schedule the remaining jobs in the
buffer optimally on the machines.

total scheduled load size of J

Assume for contradiction
that such a machine does not exist.
Then T > ∑(wi·(T+m·p(J))-p(J)) = T.

Matthias Westermann

m identical machines:
The optimal algorithm

Efficient final phase:
� Schedule virtually some of

the remaining jobs on m
empty machines according
to LPT.
Abort when the makespan is
at least three times the size
of the smallest job assigned
so far.

� Schedule the jobs from the
virtual machines on the real
machines.

� Schedule the remaining jobs
according to Greedy.

M0 Mm-1

Matthias Westermann

m identical machines:
Further results

� Lower bounds of 3/2 > rm,
if the buffer size is at most ⌊m/2⌋.

� Lower bound of 1+1/21/2 ≈ 1.7071,
if the buffer size is at most ⌊m/8⌋.

� Algorithms for different buffer sizes:

m+1(1+rm)/2 ≈ 1.733

k ∈ [1,(m+1)/2]2-1/(m-k+1)

≈ 1.6197·m+13/2

buffer sizecompetitive ratio

Matthias Westermann

m related machines:
Our result

� Scheduling algorithm achieving the
competitive ratio 2 with a buffer of size m.

5.8282.4382

upper bound

no reordering

lower bound

no reordering

our result

reordering buffer

Matthias Westermann

m related machines:
The algorithm

� When a new job arrives:
� Store this job in the buffer and remove
a job J of smallest size from the buffer.

� Schedule J on a machine Mi with load
	 αi/∑αj·(T+m·p(J))-p(J).

� After all jobs have arrived:
� Schedule the remaining jobs optimally
on m corresponding empty machines.

� Schedule the jobs from the virtual
machines on the respective real machines.

total scheduled load size of Jspeed of Mi

Matthias Westermann

m related machines:
Analysis

� At the end of the arrival phase,
the completion time of machine Mi is
	 1/∑αj·(T+(m-1)·p(Ji))

	 OPT.

� In the final phase,
the completion time of each virtual
machine is at most OPT.

last Job scheduled on Mi

Matthias Westermann

Open questions

� Our algorithm for identical machines
achieves the optimal competitive ratio.
What buffer size is necessary to obtain this
result?
⌊m/2⌋ 	 … 	 ⌈(1+2/rm)·m⌉+2

� Can our result for related machines be
improved or can a better lower bound be
shown in this case?

� Reordering for other scheduling problems?

