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Online algorithms

They are used in practice for a potentially
infinite run-time.

During run-time, new requests for service
are permanently issued, e.q.:

B Routing requests for data packets in a network
B Access requests in a storage system

They are crucial for ambitious computer
applications processing huge amounts of
data with increasingly complex hardware.
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Online model

An online algorithm gets to know the
input sequence of requests for service
incrementally, one request at a time,
without knowledge about the future.

Classic model:
A new request is not issued
until the previous one is served.
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Online reordering paradigm

In real applications,
request can usually be delayed
for a short amount of time.

AS a conseguence,

the input sequence of requests

can be reordered in a limited fashion
in order to optimize the performance.
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Application:
Rendering in computer graphics

sequence of primitives buffer graphics hardware

O >[I e e

Given: Sequence of primitives with state
changes (consecutive primitives differ in
their attribute values).

Objective: Reorder the sequence of
primitives in such a way that the number of
state changes is reduced.
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Applications

Rendering in computer graphics
Paint shop in car manufacturing
Disk scheduling

Machine scheduling
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Online reordering paradigm

input sequence ) [ T T T ] =) output sequence

buffer size k

Buffer can be used to reorder the input:

Buffer contains the first k requests of the
input that are not serviced so far.

Online algorithm selects a request
contained in the buffer for service.

Thereafter the next request in the input
takes the place of the serviced request.
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Competitive analysis

Comparison

B Online algorithm
(without knowledge about the future)

B Offline algorithm

(knows the whole input in advance)
An online algorithm is c-competitive,
if its cost are at most c times the cost
of an optimal offline algorithm.
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Reordering buffers
for general metric spaces

input sequence

output sequence (k=4)

..

Input sequence: Points in a metric space.

Objective: Move the server to the points
such that the total traveled distance is
minimized.

size
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Lower bound
for shortest distance first

input sequence

online output (k=4)
000 O
optimal output (k=4)

No memoryless algorithm
can achieve a competitive ratio of o(k)
[Khandekar, Pandit STACS'06].
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Approximation of metric spaces

Tree metric space:
Shortest path metric induced by a tree.

Each n-point metric space can randomly
be approximated by tree metric spaces
with an approximation ratio of O(log n)
[Fakcharoenphol, Rao, Talwar STOC'03].

We only need an algorithm
for (hierarchical well-separated) trees.
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Our results [Englert, Racke, W. STOC'07]

Algorithm for general trees:
Competitive ratio O(D log k).
Improved an IS

for hier rclntfpahwmlétsle@ramaiaéetre S:
Competiti

Randomized algorithm

for general n-point metric spaces:
Competitive ratio O(log n log? k).
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Open questions

Can the competitive ratio be reduced
to O(ploylog k) for line metric spaces
or arbitrary trees?

Can the competitive ratio be reduced
to O(1) for any non-trivial metric
space?

Can the competitive ratio be reduced
to O(polylog k) for general metric
spaces?
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Minimum makespan scheduling

I:II:||:| —> EHDHD makespan

Input sequence: Jobs with processing times.

Objective: Assign the jobs
to m parallel machines without preemption
such that the makespan is minimized.
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m identical machines:
Previous work (no reordering)
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1.920

1.880
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‘Bartal, Fiat, Karloff, Vohra STOC'92]
'Karger, Phillips, Torng SODA’94 ]
'Albers STOC'97]

'Fleischer, Wahl ESA'00]

'Rudin PhDThesis’01]
‘Gormley et al. SODA’00]
'Albers STOC'97]

Bartal, Karloff, Rabani IPL'94]
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m identical machines:
Our main results [Englert, Ozmen, W. FOCS’08]

Lower bound of r_, if the size of the buffer
does not depend on the input sequence.
mr,=4/3
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Values of r .

competitive ratio

1.48
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1.44
1.42

1.4
1.38
1.36
1.34
1.32
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m identical machines:

Overview
our results lower bounds upper bounds
m _ . :
reordering buffer no reordering no reordering
2 1.3333 1.5 1.5
3 1.3636 1.6667 1.6667
4 1.375 1.7321 1.7333

— 00 1.4659 1.8800 1.9201
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m identical machines:
The lower bound of r,

Assume for contradiction
that algorithm A achieves a competitive
ratio r < r, with a buffer of size k.

1/e+k jobs of size € arrive.

r,, is the
solution to
2w; = 1.

M, M

m-1
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m identical machines:
The lower bound of r,

[here exists a machine Mj
with load > W;.

IFw; = rey/m, Ij_ﬂﬁh
Nno more jobs arrive.

B Optimal makespan
< (1+k-e€)/m+e = (1+(k+m)-e)/m.

B Competitive ratio of A
>r /(1+(k+m)e) > r.
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m identical machines:
The lower bound of r,

If w, = (r,-1)/j,
(m-j) large jobs |:|
of size 1/j arrive.

B Optimal makespan
< (1+k-€)/j+e = (1+(k+j)-€)/].
B If A schedules two large jobs on the same

machine,
competitive ratio of A > 2/(1+(k+j)-€) > r.

B Otherwise, i.e., A schedules at least one of the
large jobs on a machine with load > (r.,-1)/j,
competitive ratio of A > r/(1+(k+j)-€) > r.
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m identical machines:
The optimal algorithm

When a new job arrives:

B Store this job in the buffer and remove a
job J of smallest size from the buffer.

B Schedule J on a machine M, with load
< w(T+m-p(J))-p(J).

total scheduled load || size of ]

Aftera oS have afrrthved.
Assumé\for contra&ctlon

B Sghedule thed@imaimiagninhsdr. the
Ui Top thifval(V+om @R p(@ohHes.

Matthias Westermann



m identical machines:
The optimal algorithm

Efficient final phase:

B Schedule virtually some of
the remaining jobs on m
empty machines according
to LPT. []

Abort when the makespan is
at least three times the size
of the smallest job assigned

so far.
B Schedule the jobs from the
virtual machines on the real

machines.
B Schedule the remaining jobs
according to Greedy. M M
0

m-1
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m identical machines:
Further results

Lower bounds of 3/2 > r_,
if the buffer size is at most |m/2].

Lower bound of 1+1/21/2 ~ 1.7071,
if the buffer size is at most |m/8].

Algorithms for different buffer sizes:

competitive ratio buffer size
3/2 ~ 1.6197-m+1
(1+r.)/2 ~ 1.733 m+1
2-1/(m-k+1) ke[1,(m+1)/2]

Matthias Westermann



m related machines:

Our result

Scheduling algorithm achieving the

competitive ratio 2 with a buffer of size m.

our result
reordering buffer

lower bound
no reordering

2.438

upper bound
no reordering

5.828
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m related machines:
The algorithm

When a new job arrives:

B Store this job in the buffer and remove
a job J of smallest size from the buffer.

B Schedule J on a machine M, with load
< oy/20y-(T+m-p(3))-p(I).

Afteri|all jobs
spaad 'of M :

machines on the respective real machines.
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m related machines:
Analysis

At the end of the arrival phase,

the completion time of machine M. is
< 1/%0;:(T+(m-1)-p(J)))

< OPT.

chéduled on M, _
virtual

machine is at most OPT.
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Open questions

Our algorithm for identical machines
achieves the optimal competitive ratio.

What buffer size is necessary to obtain this
result?
m/2| < ... <[(1+2/r,)m]|+2

Can our result for related machines be

improved or can a better lower bound be
shown in this case?

Reordering for other scheduling problems?
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