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Online algorithms

� They are used in practice for a potentially 
infinite run-time.

� During run-time, new requests for service 
are permanently issued, e.g.:
� Routing requests for data packets in a network
� Access requests in a storage system

� They are crucial for ambitious computer 
applications processing huge amounts of 
data with increasingly complex hardware.



Matthias Westermann

Online model

� An online algorithm gets to know the 
input sequence of requests for service 
incrementally, one request at a time, 
without knowledge about the future.

� Classic model:
A new request is not issued 
until the previous one is served.
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Online reordering paradigm 

� In real applications, 
request can usually be delayed 
for a short amount of time.

� As a consequence, 
the input sequence of requests
can be reordered in a limited fashion 
in order to optimize the performance.
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Application: 
Rendering in computer graphics

� Given: Sequence of primitives with state 
changes (consecutive primitives differ in 
their attribute values).

� Objective: Reorder the sequence of 
primitives in such a way that the number of 
state changes is reduced.

graphics hardwaresequence of primitives buffer
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Applications

� Rendering in computer graphics

� Paint shop in car manufacturing

� Disk scheduling 

� Machine scheduling

� …
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Online reordering paradigm

Buffer can be used to reorder the input:
� Buffer contains the first k requests of the 
input that are not serviced so far.

� Online algorithm selects a request 
contained in the buffer for service.

� Thereafter the next request in the input 
takes the place of the serviced request.

buffer size k

output sequenceinput sequence
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Competitive analysis

� Comparison
� Online algorithm 
(without knowledge about the future)

� Offline algorithm 
(knows the whole input in advance)

� An online algorithm is c-competitive, 
if its cost are at most c times the cost 
of an optimal offline algorithm.
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Reordering buffers 
for general metric spaces

input sequence

output sequence (k=4)

� Input sequence: Points in a metric space. 
� Objective: Move the server to the points 
such that the total traveled distance is 
minimized.

buffer size
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Lower bound 
for shortest distance first

� No memoryless algorithm 
can achieve a competitive ratio of o(k) 
[Khandekar, Pandit STACS’06].

input sequence

online output (k=4)

optimal output (k=4)
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Approximation of metric spaces

� Tree metric space: 
Shortest path metric induced by a tree.

� Each n-point metric space can randomly 
be approximated by tree metric spaces 
with an approximation ratio of O(log n) 
[Fakcharoenphol, Rao, Talwar STOC’03].

� We only need an algorithm 
for (hierarchical well-separated) trees.
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Our results [Englert, Räcke, W. STOC’07]

� Algorithm for general trees: 
Competitive ratio O(D log k).

� Improved analysis 
for hierarchical well-separated trees: 
Competitive ratio O(log2 k).

� Randomized algorithm 
for general n-point metric spaces:
Competitive ratio O(log n log2 k).

hop-diameter of the tree
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Open questions

� Can the competitive ratio be reduced 
to O(ploylog k) for line metric spaces 
or arbitrary trees?

� Can the competitive ratio be reduced 
to O(1) for any non-trivial metric 
space? 

� Can the competitive ratio be reduced 
to O(polylog k) for general metric 
spaces? 
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Minimum makespan scheduling 

� Input sequence: Jobs with processing times.
� Objective: Assign the jobs 
to m parallel machines without preemption 
such that the makespan is minimized.

makespan

M0 Mm-1
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m identical machines:
Previous work (no reordering)

� 1.986 [Bartal, Fiat, Karloff, Vohra STOC’92]
� 1.945 [Karger, Phillips, Torng SODA’94]
� 1.923 [Albers STOC’97]
� 1.920 [Fleischer, Wahl ESA’00]

� 1.880 [Rudin PhDThesis’01]
� 1.853 [Gormley et al. SODA’00]
� 1.852 [Albers STOC’97]
� 1.837 [Bartal, Karloff, Rabani IPL’94]
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m identical machines:
Our main results [Englert, Özmen, W. FOCS’08]

� Lower bound of rm, if the size of the buffer 
does not depend on the input sequence.
� r2 = 4/3

� limm→∞ rm = LambertW-1(-1/e
2)

/(1+LambertW-1(-1/e
2)) 

≈ 1.4659

� Scheduling algorithm matching the lower 
bound with a buffer of size ⌈(1+2/rm)·m⌉+2.
� 1+2/r2 = 2.5
� limm→∞ 1+2/rm ≈ 2.36

smallest real solution to x·ex = -1/e2
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Values of rm
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m identical machines:
Overview

1.92011.88001.4659→ ∞

1.73331.73211.3754

1.66671.66671.36363

1.51.51.33332

upper bounds

no reordering

lower bounds

no reordering

our results

reordering buffer
m
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m identical machines:
The lower bound of rm

� Assume for contradiction 
that algorithm A achieves a competitive 
ratio r < rm with a buffer of size k.

� 1/ε+k jobs of size ε arrive.

wi := min{rm/m, (rm-1)/i}

M0 Mm-1

rm is the 
solution to 
∑wi = 1.
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m identical machines:
The lower bound of rm

� There exists a machine Mj
with load ≥ wj. 

� If wj = rm/m,
no more jobs arrive.
� Optimal makespan
	 (1+k·ε)/m+ε = (1+(k+m)·ε)/m.

� Competitive ratio of A 
≥ rm/(1+(k+m)·ε) > r.
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m identical machines:
The lower bound of rm

� If wj = (rm-1)/j, 
(m-j) large jobs 
of size 1/j arrive.
� Optimal makespan

	 (1+k·ε)/j+ε = (1+(k+j)·ε)/j.

� If A schedules two large jobs on the same 
machine, 
competitive ratio of A ≥ 2/(1+(k+j)·ε) > r.

� Otherwise, i.e., A schedules at least one of the 
large jobs on a machine with load ≥ (rm-1)/j, 
competitive ratio of A ≥ rm/(1+(k+j)·ε) > r.
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m identical machines:
The optimal algorithm

� When a new job arrives:
� Store this job in the buffer and remove a 
job J of smallest size from the buffer.

� Schedule J on a machine Mi with load 
	 wi·(T+m·p(J))-p(J).

� After all jobs have arrived:
� Schedule the remaining jobs in the 
buffer optimally on the machines. 

total scheduled load size of J

Assume for contradiction
that such a machine does not exist. 
Then T > ∑(wi·(T+m·p(J))-p(J)) = T.
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m identical machines:
The optimal algorithm

Efficient final phase:
� Schedule virtually some of 

the remaining jobs on m 
empty machines according 
to LPT. 
Abort when the makespan is 
at least three times the size 
of the smallest job assigned 
so far. 

� Schedule the jobs from the 
virtual machines on the real 
machines. 

� Schedule the remaining jobs 
according to Greedy.

M0 Mm-1



Matthias Westermann

m identical machines: 
Further results

� Lower bounds of 3/2 > rm, 
if the buffer size is at most ⌊m/2⌋.

� Lower bound of 1+1/21/2 ≈ 1.7071, 
if the buffer size is at most ⌊m/8⌋.

� Algorithms for different buffer sizes:

m+1(1+rm)/2 ≈ 1.733

k ∈ [1,(m+1)/2]2-1/(m-k+1)

≈ 1.6197·m+13/2

buffer sizecompetitive ratio
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m related machines:
Our result

� Scheduling algorithm achieving the 
competitive ratio 2 with a buffer of size m.

5.8282.4382

upper bound

no reordering

lower bound

no reordering

our result

reordering buffer
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m related machines: 
The algorithm

� When a new job arrives:
� Store this job in the buffer and remove 
a job J of smallest size from the buffer.

� Schedule J on a machine Mi with load 
	 αi/∑αj·(T+m·p(J))-p(J).

� After all jobs have arrived:
� Schedule the remaining jobs optimally
on m corresponding empty machines.

� Schedule the jobs from the virtual 
machines on the respective real machines.

total scheduled load size of Jspeed of Mi
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m related machines:
Analysis

� At the end of the arrival phase, 
the completion time of machine Mi is
	 1/∑αj·(T+(m-1)·p(Ji))

	 OPT.

� In the final phase, 
the completion time of each virtual 
machine is at most OPT.

last Job scheduled on Mi
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Open questions

� Our algorithm for identical machines 
achieves the optimal competitive ratio. 
What buffer size is necessary to obtain this 
result? 
⌊m/2⌋ 	 … 	 ⌈(1+2/rm)·m⌉+2

� Can our result for related machines be 
improved or can a better lower bound be 
shown in this case? 

� Reordering for other scheduling problems?


