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Detecting an Internet Worm

SAON:TIYVIZ‘E: 001011 TIITEEI0101
4_

# Typical task of antivirus software:
Detecting incoming Internet worms and viruses
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Detecting an Internet Worm

SAg:,P‘:zE: 00101150008 810101
4_

# Typical task of antivirus software:
Detecting incoming Internet worms and viruses

# Must be very efficient if running on a user’s computer:

s Even a few MB/s to process.
o Don’t want to worsen user experience!
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Detecting an Internet Worm

SAON:KVIEE: 001011 TIITEEI0101
4_

# Typical task of antivirus software:
Detecting incoming Internet worms and viruses

# Must be very efficient if running on a user’s computer:

s Even a few MB/s to process.
o Don’t want to worsen user experience!

o Can detect harmful patterns by efficiently processing
a fraction of a stream?
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Subsampling Streams?
® Open Problems from IITK Workshop 2006

QUESTION 13: EFFECTS OF SUBSAMPLING (Y0SSI MATIAS)

When processing very fast streams, it is not feasible to run a streaming algorithm on the entire
stream, even one that can process each element in O(1) time. Rather it is necessary to sample from
the stream and to process the sub-stream using a streaming algorithm. For standard problems such
as estimating Fy, how does the sub-sampling affect that the accuracy of the streaming algorithms?
How should the sampling rate and the per-element time-complexity of a streaming algorithm be
traded-off to achieve optimal results?

Another way to formalize this question, suggested by Muthukrishnan, is in terms of what part
of the stream to skip and which to stream. A formal definition of the model and algorithms for
estimating F, and others can be found in [BMMYO07].
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When processing very fast streams, it is not feasible to run a streaming algorithm on the entire
stream, even one that can process each element in O(1) time. Rather it is necessary to sample from
the stream and to process the sub-stream using a streaming algorithm. For standard problems such
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Abstract

Data stream methods look at each new item of the
stream, perform a small number of operations while keep-
ing a small amount of memory, and still perform much-
needed analyses. However, in many situations, the update
speed per item is extremely critical and not every item can
be extensively examined. In practice, this has been ad-
dressed by only examining every N item from the input;
decreasing the input rate by a fraction 1/ N, but resulting in
loss of guarantees on the accuracy of the post-hoc analyses.

In this paper, we present a technique of skipping past
streams and looking at only a fraction of the input. Unlike
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amount of memory (aka sketches or samples), and still per-
form much-needed analyses on streams including data sum-
marization, finding heavy hitters and quantiles, estimating
self-join and statistical moments, etc. Operational DSMSs
such as Gigascope [9] at AT&T and CMON [16] at Sprint
are able to monitor hundreds of thousands of packet head-
ers with these algorithms. This is essential for nearly every
aspect of network management, including fault diagnosis,
verifying service level agreements on network performance
and most importantly, network security.

One of the most critical elements of a DSMS is the rate
at which updates may be processed. In particular, in the IP
network manasement annlication. there are three develon-



Streaming and Pattern Matching

Selected near-linear streaming algorithms:
(n = pattern size)

o Knuth, Morris, Pratt (1977)
s deterministic
precomputes an array of proper prefixes in O(n) time
amortized O(1) time per each character
O(n) space

e o @
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Streaming and Pattern Matching

Selected near-linear streaming algorithms:
(n = pattern size)

o Knuth, Morris, Pratt (1977)

o Karp, Rabin (1987)
s Exact algorithm
s The idea of rolling hash
s O(1) time per character (4 perhaps check)
s O(n) space
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Streaming and Pattern Matching

Selected near-linear streaming algorithms:
(n = pattern size)

o Knuth, Morris, Pratt (1977)
o Karp, Rabin (1987)

# Porat, Porat (tomorrow)
s O(logn) space and update time

s can also handle £ mismatches in O(k*polylog(n))
time and O(k?polylog(n)) space
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Approximate Pattern Matching

Data:

# Stream S of length m.

o Pattern P of length n

S=11

1

1

0

0

1

1

P =
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Approximate Pattern Matching

Data:
# Stream S of length m.
o Pattern P of length n

S=(1]1{1]10]0)1{1|0[1{0]1[{0j0[1]1[1]|0]1

P=11(0|1(11]0

Goal:
# Report all length-n subwords x of S such that dist(z, P) < an
# Don’t report any x such that dist(x, P) > 6n

1(1/1]0{0{1(1]0)j1{0(1]0{0({1]1]1]0]1
report don’t report
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Two Simple Algorithms:
Hamming and Edit Distance
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Hamming Distance

# Goal: want to report distance < an, but not > 6n
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Hamming Distance

# Goal: want to report distance < an, but not > 6n

# Information theoretically:

» (Can use the Chernoff bound to estimate if a pattern
approximately matches

s Suffices to sample O(Z - (5_%)2 .logm) locations
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Hamming Distance

# Goal: want to report distance < an, but not > 6n
o Efficient approach:
» Sampling Pattern: random set of ¢ = O(W -logm)
indices in {1,2,...,n}, repeated modulo n

OX X JOROX JeoJeoliox X Jejox Jejeliex X
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# Goal: want to report distance < an, but not > 6n
o Efficient approach:

» Sampling Pattern: random set of ¢ = O(W -logm)

indices in {1,2,...,n}, repeated modulo n

s Use ¢ approximate near neighbor data structures
based on Locality Sensitive Hashing (Gionis, Indyk,
Motwani 1999)
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Hamming Distance

# Goal: want to report distance < an, but not > 6n
o Efficient approach:

» Sampling Pattern: random set of ¢ = O(W -logm)
indices in {1,2,...,n}, repeated modulo n

s Use ¢ approximate near neighbor data structures
based on Locality Sensitive Hashing (Gionis, Indyk,
Motwani 1999)

s Approximate complexity (p = %):
s Time ~ ¢gn'*™" -logm + . q-qnf -logm + #matches - ¢
s Space ~ gn'*? - logm

OX X JOROX JeoJeoliox X Jejox Jejeliex X
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Edit Distance

# Batu, Ergun, Kilian, Magen, Raskhodnikova, Rubinfeld, Sami 2003:
For a fixed constant a € (0,1), one can tell edit
distance O(n®) from Q(n) in O(n™max{®/2, 2a—1})
time
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# Batu, Ergun, Kilian, Magen, Raskhodnikova, Rubinfeld, Sami 2003:
For a fixed constant a € (0, 1), one can tell edit
distance O(n®) from Q(n) in O(n™max{®/2, 2a—1})
time

# Reporting all subwords at distance O(n®) and none at

distance Q(n):
s |t suffices to consider shifts by multiples of ©(n®)
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time
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s Run the BEKMRRS algorithm for each shift
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Edit Distance

# Batu, Ergun, Kilian, Magen, Raskhodnikova, Rubinfeld, Sami 2003:
For a fixed constant a € (0, 1), one can tell edit
distance O(n®) from Q(n) in O(npmax{a/2, 2a—1})
time

# Reporting all subwords at distance O(n®) and none at

distance Q(n):

s |t suffices to consider shifts by multiples of ©(n®)
s Run the BEKMRRS algorithm for each shift

s Jotal time:

O(m/na) . O(nmax{a/Q, 204—1}) _ O(log m)
_0 (m - logm - polylog(n))

nmin{a/2, 1-aj}
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Query Lower Bound
for Edit Distance
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How much do we have to see?

® Goal: Want to tell distance .49n from .51n
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How much do we have to see?

® Goal: Want to tell distance .49n from .51n

# Hamming distance:
s Upper bound: O (2 logm)
s Trivial lower bound: Q (2)
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How much do we have to see?

® Goal: Want to tell distance .49n from .51n

# Hamming distance:
s Upper bound: O (2 logm)
s Trivial lower bound: Q (2)

# Main question:

|s edit distance harder?
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How much do we have to see?

Goal: Want to tell distance .49n from .51n

Hamming distance:
s Upper bound: O (2 logm)
s Trivial lower bound: € ()

Main question:

|s edit distance harder?

We show higher dependence on n
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The Model

# Input:
s two strings = and y of length n
s x IS known to the algorithm
s y Is not known, the algorithm can query it
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The Model

# Input:
s two strings = and y of length n
s x IS known to the algorithm
s y Is not known, the algorithm can query it

# Question: How many queries are necessary to tell
ed(z,y) < .49n from ed(x,y) > .51n?
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The Model

# Input:
s two strings = and y of length n
s x IS known to the algorithm
s y Is not known, the algorithm can query it

# Question: How many queries are necessary to tell
ed(z,y) < .49n from ed(x,y) > .51n?

# From our point of view:

s IS a pattern
s y IS any consecutive n characters of the stream
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1st Attempt: Shifted Random Strings

# Pick two random strings zy and z; in {0, 1}"”
o \Very likely: ed(zg, z1) > .Tn
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1st Attempt: Shifted Random Strings

# Pick two random strings zy and z; in {0, 1}"”
o \Very likely: ed(zg, z1) > .Tn

# Hard to tell apart:
s Close:

Tr = 20
y = (2o rotated by a random s in [0,.01n])
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1st Attempt: Shifted Random Strings

# Pick two random strings zy and z; in {0, 1}"”
o \Very likely: ed(zg, 2z1) > .Tn
# Hard to tell apart:
s Close:
Tr = 20
y = (2o rotated by a random s in [0,.01n])
s Far:

T = 20
y = (21 rotated by a random s in [0,.01n])
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1st Attempt: Shifted Random Strings

# Pick two random strings zy and z; in {0, 1}"”
o \Very likely: ed(zg, z1) > .Tn

# Hard to tell apart:
s Close:
Tr = 20
y = (20 rotated by a random s in [0,.01n])
s Far:
Tr = 20
y = (z; rotated by a random s in [0,.01n])

o Can show that Q(logn) queries necessary for constant
success probability
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1st Attempt: Shifted Random Strings

# Pick two random strings zy and z; in {0, 1}"”

°

Very likely: ed(zg, z1) > .Tn
# Hard to tell apart:
s Close:
Tr = 20
y = (20 rotated by a random s in [0,.01n])
s Far:
Tr = 20

y = (21 rotated by a random s in [0,.01n])

o Can show that Q(logn) queries necessary for constant
success probability

» Why? If ¢ = #queries small, the distribution on the view
close to uniform
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More Formally

® let S = #shifts

# one query:
s S random bits mapped to the query point

clelc[q/e[o

V
O
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More Formally

® let S = #shifts

# one query:
s S random bits mapped to the query point

s Chernoff + union:
probability any query point gives > .01 statistical

difference bounded by n - 2~45) = negligible

clelc[q/e[o

V
O
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More Formally (#queries > 1)

# Obstacle:
s Can’t use Chernoff directly

s Subsets of random bits that map to the query subset
can intersect

QlOIQIQ @O

\ O\\O\O
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More Formally (#queries > 1)

# Obstacle:
s Can’t use Chernoff directly

s Subsets of random bits that map to the query subset
can intersect

# Solution:
» Every subset can intersect with less than ¢* other shifts

s Balanced coloring of the shifts with ¢ colors
s Apply Chernoff independently to each of them

QlOIQIQ @O

\
\
O OO
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2nd Attempt: Recursion

# The previous approach cannot give a lower bound
better than logarithmic
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2nd Attempt: Recursion

# The previous approach cannot give a lower bound
better than logarithmic

#® Substitution product ®: /
o t€{0,1}* and zg, z1 € {0,1}*:

t® (20,21) = 26,24 - - - 2ty 1 2ty

20 = 110
21 = 010
t =10110 — ¢ ® (29, 21) = 010 110 010 010 110
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2nd Attempt: Recursion

# The previous approach cannot give a lower bound
better than logarithmic

# Substitution product ®:
o te{0,1}% and zg, z; € {0,1}*:
t® (20,21) = 26,24 - - - 2ty 1 2ty
s Distribution 7 on {0,1}*, distributions Zy, 2, on {0,1}*"
Distribution 7 ® (2, Z1):
s take random ¢ according to T

s replace each t; with a random string
iIndependently chosen from Z;,

Zy = {110,101}
Z, = {001,010}
T — ¢ =1101 — ¢ ® (20, 21) = 001 010 101 010
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2nd Attempt: Recursion

» Pick two random strings =g, z1 € {0,1}V"
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2nd Attempt: Recursion

» Pick two random strings zg, z; € {0,1}v"
» Define two distributions Dy and D; on {0, 1}V™:
s Dy ~ random rotation of zy by s in [0,.01y/n
s Dy ~ random rotation of z; by s in [0,.01y/n
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2nd Attempt: Recursion

» Pick two random strings zg, z; € {0,1}v"

» Define two distributions Dy and D; on {0, 1}V™:
s Dy ~ random rotation of zy by s in [0,.01y/n
s Dy ~ random rotation of z; by s in [0,.01y/n

o Hard to tell apart:

s Close:
r=2zp0® (Z(), 21)
Y — DO %) (D07D1)
21 Zi| 20 21 ) <1
— — — — — —
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2nd Attempt: Recursion

» Pick two random strings zg, z; € {0,1}v"

» Define two distributions Dy and D; on {0, 1}V™:
s Dy ~ random rotation of zy by s in [0,.01y/n
s Dy ~ random rotation of z; by s in [0,.01y/n

o Hard to tell apart:

s Close:
r=2zp0® (Z(), Zl)
y < Do ® (Do, D1)
s Far:
r=20® (20, 21)
y «— D1 ® (Dy, D)
21 Z1 20 21 20 <1
—  — — —> —  —

Krzysztof Onak — Approximate Pattern Matching — p. 16/20



Analysis

1. Is y<«— D1 ® (Do, Dl) far from 2o ® (ZQ, 21)?
o Suffices to show for z; ® (zg, 21)

» If they were too close, then z; would be close to 2,
which is unlikely
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o Suffices to show for z; ® (zg, 21)

» If they were too close, then z; would be close to 2,
which is unlikely

2. Is it hard to tell Dy ® (DQ,Dl) from Dy ® (Do, Dl)?
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Analysis

1. Is y<«— D1 ® (Do, Dl) far from 2o ® (ZQ, 21)?
o Suffices to show for z; ® (zg, 21)

» If they were too close, then z; would be close to 2,
which is unlikely

2. Is it hard to tell Dy ® (DQ,Dl) from Dy ® (Do, Dl)?
# ¢-Query Advantage:
s (QC{l,...,k}: D|g =D projected on coordinates in ()
s distributions Ay, A; on {0, 1}*

o Adv,(Ag, A;) = max A(Aplo, A
q(Ao, Ai) oc M o (Aolg, A1lQ)
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Analysis

1. Is y<«— D1 ® (Do, Dl) far from 2o ® (ZQ, 21)?
o Suffices to show for z; ® (zg, 21)

» If they were too close, then z; would be close to 2,
which is unlikely

2. Is it hard to tell Dy ® (DQ,Dl) from Dy ® (Do, Dl)?
# ¢-Query Advantage:
s (QC{l,...,k}: D|g =D projected on coordinates in ()
» distributions Ay, A; on {0,1}*

o Adv,(Ag, A;) = max A(Aplo, A
q(Ao, Ai) oc M o (Aolg, A1lQ)

#» Composition Lemma:
o distributions Dy, Dy, &y, &1
S.t. Advq(DQ,Dl) < % and Advq(é’o,é’l) < %
s Advq(Do ) (5(),51),@1 * (5(),51)) = %
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Sketch of Proof

o Consider any set @ of ¢ queries
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Sketch of Proof

o Consider any set @ of ¢ queries
® ¢, = number of queries to block i

#® The view of i-th block hits the difference between &, and
E1 with probability < ¢;/B (the block is hit)
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Sketch of Proof

Consider any set  of ¢ queries
g; = number of queries to block i

The view of ¢-th block hits the difference between &, and
E1 with probability < ¢;/B (the block is hit)

For every subset H of hit blocks, cannot tell Dy ® (&, £1)
from D; ® (&, £1) with probability greater than |H|/A
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Sketch of Proof

Consider any set  of ¢ queries
g; = number of queries to block i

The view of ¢-th block hits the difference between &, and
E1 with probability < ¢;/B (the block is hit)

For every subset H of hit blocks, cannot tell Dy ® (&, £1)
from D; ® (&, £1) with probability greater than |H|/A

Finally:

. |H
A(Do® (&0, &1)lq. D1®(&. &))l) < ), PrH are hlt]'%
blocks H

A ~ A4~ B AB

[

~ E[#hit blocks] P
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How Far Can This Take Us?

» For every constant k, can repeat k times to get Q(log" n)
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How Far Can This Take Us?

» For every constant k, can repeat k times to get Q(log" n)

# Distances shrink with k.
s Must switch to a larger alphabet
s Can map at random to {0, 1} at the end
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How Far Can This Take Us?

» For every constant k, can repeat k times to get Q(log" n)

# Distances shrink with k.
s Must switch to a larger alphabet
s Can map at random to {0, 1} at the end

( logn )
# Final bound: 2 \loglogn
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How Far Can This Take Us?

For every constant k, can repeat k times to get Q(log” n)

Distances shrink with k:
s Must switch to a larger alphabet
s Can map at random to {0, 1} at the end

( logn )
Final bound: 2 \loglogn

Main open question:

Is there a polynomial lower bound?
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Thank you!
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