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Detecting an Internet Worm

1001101000101
ANTIVIRUS

SOFTWARE
00101110001110101 INTERNET

Typical task of antivirus software:

Detecting incoming Internet worms and viruses
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Detecting an Internet Worm

1001101000101
ANTIVIRUS

SOFTWARE
00101110001110101 INTERNET

Typical task of antivirus software:

Detecting incoming Internet worms and viruses

Must be very efficient if running on a user’s computer:

Even a few MB/s to process.

Don’t want to worsen user experience!
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Detecting an Internet Worm

1001101000101
ANTIVIRUS

SOFTWARE
00101110001110101 INTERNET

Typical task of antivirus software:

Detecting incoming Internet worms and viruses

Must be very efficient if running on a user’s computer:

Even a few MB/s to process.

Don’t want to worsen user experience!

Can detect harmful patterns by efficiently processing
a fraction of a stream?
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Subsampling Streams?

Open Problems from IITK Workshop 2006
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Subsampling Streams?

Open Problems from IITK Workshop 2006

ICDE 2007
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Streaming and Pattern Matching

Selected near-linear streaming algorithms:
(n = pattern size)

Knuth, Morris, Pratt (1977)

deterministic

precomputes an array of proper prefixes in O(n) time

amortized O(1) time per each character

O(n) space
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Streaming and Pattern Matching

Selected near-linear streaming algorithms:
(n = pattern size)

Knuth, Morris, Pratt (1977)

Karp, Rabin (1987)

Exact algorithm

The idea of rolling hash

O(1) time per character (+ perhaps check)

O(n) space
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Streaming and Pattern Matching

Selected near-linear streaming algorithms:
(n = pattern size)

Knuth, Morris, Pratt (1977)

Karp, Rabin (1987)

Porat, Porat (tomorrow)

O(log n) space and update time

can also handle k mismatches in O(k2polylog(n))

time and O(k3polylog(n)) space
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Approximate Pattern Matching

Data:

Stream S of length m.

Pattern P of length n

1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 01

1 0 1 1 0

S =

P =
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Approximate Pattern Matching

Data:

Stream S of length m.

Pattern P of length n

1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 01

1 0 1 1 0

S =

P =

Goal:

Report all length-n subwords x of S such that dist(x, P ) ≤ αn

Don’t report any x such that dist(x, P ) ≥ βn

1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 01

report don’t report
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Two Simple Algorithms:

Hamming and Edit Distance
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Hamming Distance

Goal: want to report distance ≤ αn, but not ≥ βn
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Hamming Distance

Goal: want to report distance ≤ αn, but not ≥ βn

Information theoretically:

Can use the Chernoff bound to estimate if a pattern
approximately matches

Suffices to sample O(m
n ·

1
(β−α)2 · log m) locations
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Hamming Distance

Goal: want to report distance ≤ αn, but not ≥ βn

Efficient approach:

Sampling Pattern: random set of q = O( 1
(β−α)2 · log m)

indices in {1, 2, . . . , n}, repeated modulo n
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Hamming Distance

Goal: want to report distance ≤ αn, but not ≥ βn

Efficient approach:

Sampling Pattern: random set of q = O( 1
(β−α)2 · log m)

indices in {1, 2, . . . , n}, repeated modulo n

Use q approximate near neighbor data structures
based on Locality Sensitive Hashing (Gionis, Indyk,
Motwani 1999)
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Hamming Distance

Goal: want to report distance ≤ αn, but not ≥ βn

Efficient approach:

Sampling Pattern: random set of q = O( 1
(β−α)2 · log m)

indices in {1, 2, . . . , n}, repeated modulo n

Use q approximate near neighbor data structures
based on Locality Sensitive Hashing (Gionis, Indyk,
Motwani 1999)

Approximate complexity (ρ = α
β ):

Time ≈ qn1+ρ · log m + n
m · q · qnρ · log m + #matches · q

Space ≈ qn1+ρ · log m
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Edit Distance

Batu, Ergün, Kilian, Magen, Raskhodnikova, Rubinfeld, Sami 2003:

For a fixed constant α ∈ (0, 1), one can tell edit

distance O(nα) from Ω(n) in Õ(nmax{α/2, 2α−1})
time
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Edit Distance

Batu, Ergün, Kilian, Magen, Raskhodnikova, Rubinfeld, Sami 2003:

For a fixed constant α ∈ (0, 1), one can tell edit

distance O(nα) from Ω(n) in Õ(nmax{α/2, 2α−1})
time

Reporting all subwords at distance O(nα) and none at
distance Ω(n):

It suffices to consider shifts by multiples of Θ(nα)
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Edit Distance

Batu, Ergün, Kilian, Magen, Raskhodnikova, Rubinfeld, Sami 2003:

For a fixed constant α ∈ (0, 1), one can tell edit

distance O(nα) from Ω(n) in Õ(nmax{α/2, 2α−1})
time

Reporting all subwords at distance O(nα) and none at
distance Ω(n):

It suffices to consider shifts by multiples of Θ(nα)

Run the BEKMRRS algorithm for each shift
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Edit Distance

Batu, Ergün, Kilian, Magen, Raskhodnikova, Rubinfeld, Sami 2003:

For a fixed constant α ∈ (0, 1), one can tell edit

distance O(nα) from Ω(n) in Õ(nmax{α/2, 2α−1})
time

Reporting all subwords at distance O(nα) and none at
distance Ω(n):

It suffices to consider shifts by multiples of Θ(nα)

Run the BEKMRRS algorithm for each shift

Total time:

O(m/nα) · Õ(nmax{α/2, 2α−1}) ·O(log m)

= O

(

m · log m · polylog(n)

nmin{α/2, 1−α}

)
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Query Lower Bound

for Edit Distance
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How much do we have to see?

Goal: Want to tell distance .49n from .51n
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How much do we have to see?

Goal: Want to tell distance .49n from .51n

Hamming distance:

Upper bound: O
(

m
n log m

)

Trivial lower bound: Ω
(

m
n

)
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How much do we have to see?

Goal: Want to tell distance .49n from .51n

Hamming distance:

Upper bound: O
(

m
n log m

)

Trivial lower bound: Ω
(

m
n

)

Main question:

Is edit distance harder?
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How much do we have to see?

Goal: Want to tell distance .49n from .51n

Hamming distance:

Upper bound: O
(

m
n log m

)

Trivial lower bound: Ω
(

m
n

)

Main question:

Is edit distance harder?

We show higher dependence on n
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The Model

Input:

two strings x and y of length n

x is known to the algorithm

y is not known, the algorithm can query it
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The Model

Input:

two strings x and y of length n

x is known to the algorithm

y is not known, the algorithm can query it

Question: How many queries are necessary to tell
ed(x, y) ≤ .49n from ed(x, y) ≥ .51n?
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The Model

Input:

two strings x and y of length n

x is known to the algorithm

y is not known, the algorithm can query it

Question: How many queries are necessary to tell
ed(x, y) ≤ .49n from ed(x, y) ≥ .51n?

From our point of view:

x is a pattern

y is any consecutive n characters of the stream
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1st Attempt: Shifted Random Strings

Pick two random strings z0 and z1 in {0, 1}n

Very likely: ed(z0, z1) ≥ .7n
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1st Attempt: Shifted Random Strings

Pick two random strings z0 and z1 in {0, 1}n

Very likely: ed(z0, z1) ≥ .7n

Hard to tell apart:

Close:

x = z0

y = (z0 rotated by a random s in [0,.01n])
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1st Attempt: Shifted Random Strings

Pick two random strings z0 and z1 in {0, 1}n

Very likely: ed(z0, z1) ≥ .7n

Hard to tell apart:

Close:

x = z0

y = (z0 rotated by a random s in [0,.01n])

Far:

x = z0

y = (z1 rotated by a random s in [0,.01n])
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1st Attempt: Shifted Random Strings

Pick two random strings z0 and z1 in {0, 1}n

Very likely: ed(z0, z1) ≥ .7n

Hard to tell apart:

Close:

x = z0

y = (z0 rotated by a random s in [0,.01n])

Far:

x = z0

y = (z1 rotated by a random s in [0,.01n])

Can show that Ω(log n) queries necessary for constant
success probability
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1st Attempt: Shifted Random Strings

Pick two random strings z0 and z1 in {0, 1}n

Very likely: ed(z0, z1) ≥ .7n

Hard to tell apart:

Close:

x = z0

y = (z0 rotated by a random s in [0,.01n])

Far:

x = z0

y = (z1 rotated by a random s in [0,.01n])

Can show that Ω(log n) queries necessary for constant
success probability

Why? If q = #queries small, the distribution on the view
close to uniform
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More Formally

Let S = #shifts

one query:

S random bits mapped to the query point
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More Formally

Let S = #shifts

one query:

S random bits mapped to the query point

Chernoff + union:
probability any query point gives ≥ .01 statistical

difference bounded by n · 2−Ω(S) = negligible
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More Formally (#queries ≥ 1)
Obstacle:

Can’t use Chernoff directly

Subsets of random bits that map to the query subset
can intersect

Krzysztof Onak – Approximate Pattern Matching – p. 14/20



More Formally (#queries ≥ 1)
Obstacle:

Can’t use Chernoff directly

Subsets of random bits that map to the query subset
can intersect

Solution:

Every subset can intersect with less than q2 other shifts

Balanced coloring of the shifts with q2 colors

Apply Chernoff independently to each of them
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2nd Attempt: Recursion

The previous approach cannot give a lower bound
better than logarithmic
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2nd Attempt: Recursion

z0 = 110

z1 = 010

t = 10110 −→ t ⊛ (z0, z1) = 010 110 010 010 110

The previous approach cannot give a lower bound
better than logarithmic

Substitution product ⊛:
t ∈ {0, 1}k and z0, z1 ∈ {0, 1}k

′

:

t ⊛ (z0, z1) = zt1zt0 . . . ztk−1
ztk
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2nd Attempt: Recursion

Z0 ≡ {110,101}
Z1 ≡ {001,010}

T → t = 1101 −→ t ⊛ (z0, z1) = 001 010 101 010

The previous approach cannot give a lower bound
better than logarithmic

Substitution product ⊛:
t ∈ {0, 1}k and z0, z1 ∈ {0, 1}k

′

:

t ⊛ (z0, z1) = zt1zt0 . . . ztk−1
ztk

Distribution T on {0, 1}k, distributions Z0,Z1 on {0, 1}k′

:
Distribution T ⊛ (Z0, Z1):

take random t according to T
replace each ti with a random string
independently chosen from Zti
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2nd Attempt: Recursion

Pick two random strings z0, z1 ∈ {0, 1}
√

n
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2nd Attempt: Recursion

Pick two random strings z0, z1 ∈ {0, 1}
√

n

Define two distributions D0 and D1 on {0, 1}
√

n:

D0 ∼ random rotation of z0 by s in [0, .01
√

n]

D1 ∼ random rotation of z1 by s in [0, .01
√

n]
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2nd Attempt: Recursion

z1 z1 z1 z1z0 z0

Pick two random strings z0, z1 ∈ {0, 1}
√

n

Define two distributions D0 and D1 on {0, 1}
√

n:

D0 ∼ random rotation of z0 by s in [0, .01
√

n]

D1 ∼ random rotation of z1 by s in [0, .01
√

n]

Hard to tell apart:

Close:

x = z0 ⊛ (z0, z1)
y ← D0 ⊛ (D0,D1)
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2nd Attempt: Recursion

z1 z1 z1 z1z0 z0

Pick two random strings z0, z1 ∈ {0, 1}
√

n

Define two distributions D0 and D1 on {0, 1}
√

n:

D0 ∼ random rotation of z0 by s in [0, .01
√

n]

D1 ∼ random rotation of z1 by s in [0, .01
√

n]

Hard to tell apart:

Close:

x = z0 ⊛ (z0, z1)
y ← D0 ⊛ (D0,D1)

Far:

x = z0 ⊛ (z0, z1)
y ← D1 ⊛ (D0,D1)
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Analysis

1. Is y ← D1 ⊛ (D0,D1) far from z0 ⊛ (z0, z1)?

Suffices to show for z1 ⊛ (z0, z1)

If they were too close, then z0 would be close to z1,
which is unlikely
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Suffices to show for z1 ⊛ (z0, z1)

If they were too close, then z0 would be close to z1,
which is unlikely

2. Is it hard to tell D0 ⊛ (D0,D1) from D1 ⊛ (D0,D1)?
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Analysis

1. Is y ← D1 ⊛ (D0,D1) far from z0 ⊛ (z0, z1)?

Suffices to show for z1 ⊛ (z0, z1)

If they were too close, then z0 would be close to z1,
which is unlikely

2. Is it hard to tell D0 ⊛ (D0,D1) from D1 ⊛ (D0,D1)?

q-Query Advantage:
Q ⊆ {1, . . . , k}: D|Q = D projected on coordinates in Q

distributions A0,A1 on {0, 1}k
Advq(A0, Ai) = max

Q⊆{1,...,k},|Q|=q
∆(A0|Q, A1|Q)
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Analysis

1. Is y ← D1 ⊛ (D0,D1) far from z0 ⊛ (z0, z1)?

Suffices to show for z1 ⊛ (z0, z1)

If they were too close, then z0 would be close to z1,
which is unlikely

2. Is it hard to tell D0 ⊛ (D0,D1) from D1 ⊛ (D0,D1)?

q-Query Advantage:
Q ⊆ {1, . . . , k}: D|Q = D projected on coordinates in Q

distributions A0,A1 on {0, 1}k
Advq(A0, Ai) = max

Q⊆{1,...,k},|Q|=q
∆(A0|Q, A1|Q)

Composition Lemma:
distributions D0, D1, E0, E1
s.t. Advq(D0,D1) ≤ q

A and Advq(E0, E1) ≤ q
B

Advq(D0 ⊛ (E0, E1),D1 ⊛ (E0, E1)) = q
AB
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Sketch of Proof

Consider any set Q of q queries
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Sketch of Proof

Consider any set Q of q queries

qi = number of queries to block i
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Sketch of Proof

Consider any set Q of q queries

qi = number of queries to block i

The view of i-th block hits the difference between E0 and
E1 with probability ≤ qi/B (the block is hit)
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Sketch of Proof

Consider any set Q of q queries

qi = number of queries to block i

The view of i-th block hits the difference between E0 and
E1 with probability ≤ qi/B (the block is hit)

For every subset H of hit blocks, cannot tell D0 ⊛ (E0, E1)
from D1 ⊛ (E0, E1) with probability greater than |H|/A
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Sketch of Proof

Consider any set Q of q queries

qi = number of queries to block i

The view of i-th block hits the difference between E0 and
E1 with probability ≤ qi/B (the block is hit)

For every subset H of hit blocks, cannot tell D0 ⊛ (E0, E1)
from D1 ⊛ (E0, E1) with probability greater than |H|/A
Finally:

∆(D0⊛(E0, E1)|Q,D1⊛(E0, E1)|Q) ≤
∑

blocks H

Pr[H are hit]· |H|
A

=
E[#hit blocks]

A
≤ 1

A

∑

i

qi

B
=

q

AB
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How Far Can This Take Us?

For every constant k, can repeat k times to get Ω(logk n)
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How Far Can This Take Us?

For every constant k, can repeat k times to get Ω(logk n)

Distances shrink with k:

Must switch to a larger alphabet

Can map at random to {0, 1} at the end
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How Far Can This Take Us?

For every constant k, can repeat k times to get Ω(logk n)

Distances shrink with k:

Must switch to a larger alphabet

Can map at random to {0, 1} at the end

Final bound: 2
Ω

(

log n

log log n

)
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How Far Can This Take Us?

For every constant k, can repeat k times to get Ω(logk n)

Distances shrink with k:

Must switch to a larger alphabet

Can map at random to {0, 1} at the end

Final bound: 2
Ω

(

log n

log log n

)

Main open question:

Is there a polynomial lower bound?
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Thank you!
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