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Source: Dongarra and Sullivan, Comput. Sci. Eng., 2000.
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The Decompositional Approach

“The underlying principle of the decompositional approach to matrix
computation is that it is not the business of the matrix algorithmicists
to solve particular problems but to construct computational
platforms from which a variety of problems can be solved.”

A decomposition solves not one but many problems

Often expensive to compute but can be reused

Shows that apparently different algorithms produce the same object
Facilitates rounding-error analysis

Can be updated efficiently to reflect new information

O T

Has led to highly effective black-box software

Source: Stewart 2000.

Finding Structure with Randomness, Workshop on Algorithms for Massive Data Sets, IIT-Kanpur, 18 December 2009



Low-Rank Matrix Approximation

A ~ B C,
m X n mXxk kXn.

Benefits:

« Exposes structure of the matrix
- Allows efficient storage
« Facilitates multiplication with vectors or other matrices

Applications:

@ Principal component analysis

- Low-dimensional embedding of data

@ Approximating continuum operators with exponentially decaying spectra
:0- Model reduction for PDEs with rapidly oscillating coefficients
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Approximation of Massive Data

: Problem: Major cost for numerical algorithms is data transfer

:» Cost scales, roughly, with number of passes not amount of arithmetic
« Random access to data is expensive, so classical algorithms may fail
@ Assume a matrix—matrix product with data matrix takes one pass

@ Matrix multiplication is efficient in many architectures:

& Graphics processing units
8 Multi-core processors

«a Parallel computers

@ Distributed systems
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Model Problem

Given:

@ An m X n matrix A with m > n
« Target rank k
« Qversampling parameter p

Construct an n x (k + p) matrix Q with orthonormal columns s.t.

A -QQAll~ min_|A- B,
rank(B)<k

@ (QQT* is the orthogonal projector onto the range of Q
@ The basis () can be used to construct matrix decompositions
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From Basis to Decomposition

Problem: Given the basis (Q, where do we get a factorization?

Example: Singular value decomposition

Assume A ism xn and QQ isn X k where A ~ QQ*A.

1. Form k£ x n matrix B = Q*A with one pass
2. Factor B=UXV™* at cost O(k°n)

3. Conclude A =~ (QU)XV™.

Total Cost: One pass + one multiply (m x n x k) + O(k?n) flops
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Random Sampling: Intuition
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Proto-Algorithm for Model Problem

« Converting this intuition into a computational procedure...

Input: An m X n matrix A, a target rank k, an oversampling parameter p

Output: An m x (k + p) matrix @ with orthonormal columns

1. Draw an n x (k 4+ p) random matrix 2.
2. Form the matrix product Y = A(Q.
3. Construct an orthonormal basis () for the range of Y.

Major Players: Deshpande, Drineas, Frieze, Kannan, Mahoney,
Martinsson, Papadimitriou, Rokhlin, Sarlos, Tygert, Vempala (1998-2009)
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Implementation Issues

: How much oversampling?

Remarkably, p = 5 or p = 10 is usually adequate!

- What random matrix?

For this application, standard Gaussian works nicely.

: How do we do the matrix-matrix multiply?

Exploit the computational architecture.

: How do we compute the orthonormal basis?

Carefully... Double Gram—Schmidt or Householder reflectors.

: How do we pick k7

> 0 > O > O P O PO

: Can be done adaptively using a randomized error estimator.
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Total Costs for Approximate k-SVD

Proto-Algorithm:

1 pass + 2 multiplies (m xn x k) + k*(m+n) flops

Classical Sparse Methods:

k passes + Kk multiplies (m xn x1) + k*(m+n) flops

Classical Dense Methods:

k passes (or more) + mnk flops
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Proto-Algorithm + Power Scheme

Problem: The singular values of the data matrix often decay slowly

Remedy: Apply the proto-algorithm to (AA*)?A for small g

Input: An m X n matrix A, a target rank k£, an oversampling parameter p

Output: An m x (k + p) matrix Q with orthonormal columns

1. Draw an n x (k 4+ p) random matrix 2.
2. Form the matrix product Y = (AA*)7AQ by sequential multiplication.
3. Construct an orthonormal basis Q for the range of Y.

Total Cost: g passes + ¢ multiplies (m x n x k) + O(kmn) flops.
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Eigenfaces

« Database consists of 7,254 photographs with 98, 304 pixels each
@ Form 98,304 x 7,254 data matrix A
& Total storage: 5.4 Gigabytes (uncompressed)

‘8 Center each column and scale to unit norm to obtain A

« The dominant left singular vectors are called eigenfaces
@ Attempt to compute first 100 eigenfaces using power scheme

Image: Scholarpedia article “Eigenfaces,” 12 October 2009
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Approximating a Helmholtz Integral Operator

Approximation errors
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Error Bound for Proto-Algorithm

Theorem 1. [HMT 2009] Assume

:a the matrix A is m X n with m > n;
@ the optima/ error og+1 — minrank(B)Sk HA — B
:a the test matrix 2 is n x (k + p) standard Gaussian.

7

Then the basis (Q computed by the proto-algorithm satisfies

) 4k Fp
E|A-QQA| < |1+ p_lpw Okl

The probability of a substantially larger error is negligible.
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Error Bound for Power Scheme

Theorem 2. [HMT 2009] Assume

:a the matrix A is m X n with m > n;

@ the optima/ error og+1 — minrank(B)Sk HA — B ,
:a the test matrix 2 is n x (k + p) standard Gaussian.

Then the basis (Q computed by the proto-algorithm satisfies

4
E|A-QQ Al < |1+

VEp 1Y
1 \/ﬁ Ok+1-

p
The probability of a substantially larger error is negligible.

0 The power scheme drives the extra factor to one exponentially fast!
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Inner Workings |

Assume

& A is m x n with SVD
kK n—=k

~ N vl ok
L BTN R4

@ Let ) be a test matrix, decomposed as
Ql = ‘/1* 2 and QQ = ‘/2* Q.

« Construct the sample matrix Y = ASQ.

Theorem 3. [BMD09, HMTO09] When Q4 has full row rank,

I(T— Py)A|? < |5 + || 2200 ||

Finding Structure with Randomness, Workshop on Algorithms for Massive Data Sets, IIT-Kanpur, 18 December 2009

18



Inner Workings I

@ When €2 is Gaussian, £2; and €25 are independent.
« Taking the expectation w.r.t. £ first...

[0 HEZQZQIH < ||32|| HQH}F + || 32| Hﬂm
@ The expectations of the norms w.r.t. {2, satisfy

k k +
B[], < /- 2r and Eaj] < VEEL

p—1 D

‘8 Conclude

E|(1-Py)A| < |14/ | o + o

k ek + 00 5 1/2
y (2 )
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Result for Structured Random Matrices

Theorem 4. [HMTO09] Suppose that €2 is an n x £ SRFT matrix where

¢ 2 (k+logn)logk.

Cn
(- Py) Al < /1+5" opn

except with probability k~°.

Then

« Follows from same approach
‘8 Uses Rudelson’s lemma to show that random rows from a randomized
Fourier transform form a well-conditioned set
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Faster SVD with Structured Randomness

Acceleration factor
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n=1,024

.. t(direct)/t(gauss)
- t(direct)/t(srft)
R t(direct)/t(svd)

n = 2,048

n = 4,096
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To learn more...

E-mail:
‘¢ jtroppQacm.caltech.edu

Web: http://www.acm.caltech.edu/~jtropp

Papers:

@ HMT, “Finding Structure with Randomness: Stochastic Algorithms for Computing
Approximate Matrix Decompositions,” submitted 2009
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