Finding Structure with Randomness

Joel A. Tropp

Applied & Computational Mathematics California Institute of Technology jtropp@acm.caltech.edu

Joint with P.-G. Martinsson and N. Halko Applied Mathematics, Univ. Colorado at Boulder

Top 10 Scientific Algorithms

nst (nere, the list is in chronological order; nowever,			
the articles appear in no particular order):	enc		
	vol		
 Metropolis Algorithm for Monte Carlo 	ofv		
Simplex Method for Linear Programming			
Krylov Subspace Iteration Methods	way		
• The Decompositional Approach to Matrix	eve		
Computations	rela		
The Fortran Optimizing Compiler	pro		
• OR Algorithm for Computing Eigenvalues			
Ouicksort Algorithm for Sorting			
Fast Fourier Transform			
 Integer Relation Detection 			
• Fast Multipole Method	woi		
2 abo	nlai		
With each of these algorithms or approaches, there	whe		
is a person or group receiving credit for inventing or	not		

Source: Dongarra and Sullivan, Comput. Sci. Eng., 2000.

The Decompositional Approach

"The underlying principle of the decompositional approach to matrix computation is that it is not the business of the matrix algorithmicists to solve particular problems but to construct computational platforms from which a variety of problems can be solved."

- A decomposition solves not one but many problems
- Often expensive to compute but can be reused
- Shows that apparently different algorithms produce the same object
- Facilitates rounding-error analysis
- Can be updated efficiently to reflect new information
- Has led to highly effective black-box software

Source: Stewart 2000.

Low-Rank Matrix Approximation

\boldsymbol{A}	\approx	B	$oldsymbol{C},$
$m \times n$		$m \times k$	$k \times n$.

Benefits:

- Exposes structure of the matrix
- Allows efficient storage
- Facilitates multiplication with vectors or other matrices

Applications:

- Principal component analysis
- Low-dimensional embedding of data
- Approximating continuum operators with exponentially decaying spectra
- Model reduction for PDEs with rapidly oscillating coefficients

Approximation of Massive Data

- **Problem:** Major cost for numerical algorithms is data transfer
- Cost scales, roughly, with number of passes **not** amount of arithmetic
- Random access to data is expensive, so classical algorithms may fail
- **Assume** a matrix–matrix product with data matrix takes one pass
- Matrix multiplication is efficient in many architectures:
 - Graphics processing units
 - Multi-core processors
 - Parallel computers
 - Distributed systems

Model Problem

Given:

- \blacktriangleright An $m \times n$ matrix \boldsymbol{A} with $m \ge n$
- \blacktriangleright Target rank k
- \blacktriangleright Oversampling parameter p

Construct an $n \times (k + p)$ matrix Q with orthonormal columns s.t.

$$\|oldsymbol{A} - oldsymbol{Q}oldsymbol{Q}^*oldsymbol{A}\| pprox \min_{\mathrm{rank}(oldsymbol{B}) \leq k} \|oldsymbol{A} - oldsymbol{B}\|\,,$$

QQ* is the orthogonal projector onto the range of Q
 The basis Q can be used to construct matrix decompositions

From Basis to Decomposition

Problem: Given the basis Q, where do we get a factorization?

Example: Singular value decomposition

Assume A is $m \times n$ and Q is $n \times k$ where $A \approx QQ^*A$.

- 1. Form $k \times n$ matrix $\boldsymbol{B} = \boldsymbol{Q}^* \boldsymbol{A}$ with one pass
- 2. Factor $\boldsymbol{B} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^*$ at cost $O(k^2n)$
- 3. Conclude $A \approx (QU)\Sigma V^*$.

Total Cost: One pass + one multiply $(m \times n \times k) + O(k^2n)$ flops

Random Sampling: Intuition

Proto-Algorithm for Model Problem

Converting this intuition into a computational procedure...

Input: An $m \times n$ matrix A, a target rank k, an oversampling parameter p**Output:** An $m \times (k + p)$ matrix Q with orthonormal columns

- 1. Draw an $n \times (k+p)$ random matrix Ω .
- 2. Form the matrix product $Y = A\Omega$.
- 3. Construct an orthonormal basis Q for the range of Y.

Major Players: Deshpande, Drineas, Frieze, Kannan, Mahoney, Martinsson, Papadimitriou, Rokhlin, Sarlos, Tygert, Vempala (1998–2009)

Implementation Issues

- **Q:** How much oversampling?
- A: Remarkably, p = 5 or p = 10 is usually adequate!
- **Q:** What random matrix?
- A: For this application, standard Gaussian works nicely.
- **Q:** How do we do the matrix-matrix multiply?
- A: Exploit the computational architecture.
- **Q:** How do we compute the orthonormal basis?
- A: Carefully... Double Gram–Schmidt or Householder reflectors.
- **Q:** How do we pick k?
- A: Can be done adaptively using a randomized error estimator.

Total Costs for Approximate *k*-**SVD**

Proto-Algorithm:

1 pass + 2 multiplies
$$(m \times n \times k) + k^2(m+n)$$
 flops

Classical Sparse Methods:

k passes + k multiplies
$$(m \times n \times 1)$$
 + $k^2(m+n)$ flops

Classical Dense Methods:

k passes (or more) +
$$mnk$$
 flops

Proto-Algorithm + Power Scheme

Problem: The singular values of the data matrix often decay slowly **Remedy:** Apply the proto-algorithm to $(AA^*)^q A$ for small q

Input: An $m \times n$ matrix A, a target rank k, an oversampling parameter p**Output:** An $m \times (k + p)$ matrix Q with orthonormal columns

- 1. Draw an $n \times (k+p)$ random matrix Ω .
- 2. Form the matrix product $\mathbf{Y} = (\mathbf{A}\mathbf{A}^*)^q \mathbf{A}\mathbf{\Omega}$ by sequential multiplication.
- 3. Construct an orthonormal basis Q for the range of Y.

Total Cost: q passes + q multiplies $(m \times n \times k) + O(kmn)$ flops.

Eigenfaces

- \blacktriangleright Database consists of 7,254 photographs with 98,304 pixels each
- \blacktriangleright Form $98,304\times7,254$ data matrix \boldsymbol{A}
- Total storage: 5.4 Gigabytes (uncompressed)
- lpha Center each column and scale to unit norm to obtain A
- The dominant left singular vectors are called **eigenfaces**
- Attempt to compute first 100 eigenfaces using power scheme

Image: Scholarpedia article "Eigenfaces," 12 October 2009

Finding Structure with Randomness, Workshop on Algorithms for Massive Data Sets, IIT-Kanpur, 18 December 2009

Approximating a Helmholtz Integral Operator

Error Bound for Proto-Algorithm

Theorem 1. [HMT 2009] Assume

- \blacktriangleright the matrix A is $m \times n$ with $m \ge n$;
- * the optimal error $\sigma_{k+1} = \min_{\operatorname{rank}(B) \leq k} \|A B\|$;
- *▶* the test matrix Ω is n × (k + p) standard Gaussian.

Then the basis Q computed by the proto-algorithm satisfies

$$\mathbb{E} \|\boldsymbol{A} - \boldsymbol{Q}\boldsymbol{Q}^*\boldsymbol{A}\| \leq \left[1 + \frac{4\sqrt{k+p}}{p-1} \cdot \sqrt{n}\right] \sigma_{k+1}.$$

The probability of a substantially larger error is negligible.

Error Bound for Power Scheme

Theorem 2. [HMT 2009] Assume

- ▶ the matrix A is $m \times n$ with $m \ge n$;
- * the optimal error $\sigma_{k+1} = \min_{\operatorname{rank}(B) \leq k} \|A B\|$;
- *w* the test matrix Ω is n × (k + p) standard Gaussian.

Then the basis Q computed by the proto-algorithm satisfies

$$\mathbb{E} \|\boldsymbol{A} - \boldsymbol{Q}\boldsymbol{Q}^*\boldsymbol{A}\| \leq \left[1 + \frac{4\sqrt{k+p}}{p-1} \cdot \sqrt{n}\right]^{1/q} \sigma_{k+1}.$$

The probability of a substantially larger error is negligible.

The power scheme drives the extra factor to one exponentially fast!

Inner Workings I

Assume

 \blacktriangleright **A** is $m \times n$ with SVD

$$\boldsymbol{A} = \boldsymbol{U} \begin{bmatrix} k & n-k \\ \boldsymbol{\Sigma}_1 & \\ & \boldsymbol{\Sigma}_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{V}_1^* \\ \boldsymbol{V}_2^* \end{bmatrix} \begin{bmatrix} k \\ n-k \end{bmatrix}$$

 \blacktriangleright Let Ω be a test matrix, decomposed as

$$\mathbf{\Omega}_1 = oldsymbol{V}_1^* \, oldsymbol{\Omega}$$
 and $\mathbf{\Omega}_2 = oldsymbol{V}_2^* \, oldsymbol{\Omega}.$

 \sim Construct the sample matrix $Y = A\Omega$.

Theorem 3. [BMD09, HMT09] When Ω_1 has full row rank,

$$\left\| (\mathbf{I} - \boldsymbol{P}_{\boldsymbol{Y}}) \boldsymbol{A} \right\|^2 \le \left\| \boldsymbol{\Sigma}_2 \right\|^2 + \left\| \boldsymbol{\Sigma}_2 \boldsymbol{\Omega}_2 \boldsymbol{\Omega}_1^{\dagger} \right\|^2.$$

Inner Workings II

- \bigstar When Ω is Gaussian, Ω_1 and Ω_2 are independent.
- \blacktriangleright Taking the expectation w.r.t. Ω_2 first...

$$\mathbb{E}_{2}\left\|\boldsymbol{\Sigma}_{2}\boldsymbol{\Omega}_{2}\boldsymbol{\Omega}_{1}^{\dagger}\right\| \leq \left\|\boldsymbol{\Sigma}_{2}\right\|\left\|\boldsymbol{\Omega}_{1}^{\dagger}\right\|_{\mathrm{F}} + \left\|\boldsymbol{\Sigma}_{2}\right\|_{\mathrm{F}}\left\|\boldsymbol{\Omega}_{1}^{\dagger}\right\|.$$

 \bigstar The expectations of the norms w.r.t. $\mathbf{\Omega}_1$ satisfy

$$\mathbb{E} \left\| \mathbf{\Omega}_{1}^{\dagger} \right\|_{\mathrm{F}} \leq \sqrt{\frac{k}{p-1}} \quad \text{and} \quad \mathbb{E} \left\| \mathbf{\Omega}_{1}^{\dagger} \right\| \leq \frac{\mathrm{e}\sqrt{k+p}}{p}$$

✤ Conclude

$$\mathbb{E} \left\| (\mathbf{I} - \boldsymbol{P}_{\boldsymbol{Y}}) \boldsymbol{A} \right\| \leq \left[1 + \sqrt{\frac{k}{p-1}} \right] \sigma_{k+1} + \frac{e\sqrt{k+p}}{p} \left(\sum_{j=k+1}^{\infty} \sigma_j^2 \right)^{1/2}$$

Result for Structured Random Matrices

Theorem 4. [HMT09] Suppose that Ω is an $n \times \ell$ SRFT matrix where

 $\ell \gtrsim (k + \log n) \log k.$

Then

$$\|(\mathbf{I} - \mathbf{P}_{\mathbf{Y}})\mathbf{A}\| \leq \sqrt{1 + \frac{Cn}{\ell}} \cdot \sigma_{k+1},$$

except with probability k^{-c} .

- Follows from same approach
- Uses Rudelson's lemma to show that random rows from a randomized Fourier transform form a well-conditioned set

Faster SVD with Structured Randomness

Finding Structure with Randomness, Workshop on Algorithms for Massive Data Sets, IIT-Kanpur, 18 December 2009 21

To learn more...

E-mail:

jtropp@acm.caltech.edu

Web: http://www.acm.caltech.edu/~jtropp

Papers:

HMT, "Finding Structure with Randomness: Stochastic Algorithms for Computing Approximate Matrix Decompositions," submitted 2009