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Top 10 Scientific Algorithms

Source: Dongarra and Sullivan, Comput. Sci. Eng., 2000.
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The Decompositional Approach

“The underlying principle of the decompositional approach to matrix

computation is that it is not the business of the matrix algorithmicists

to solve particular problems but to construct computational

platforms from which a variety of problems can be solved.”

§ A decomposition solves not one but many problems

§ Often expensive to compute but can be reused

§ Shows that apparently different algorithms produce the same object

§ Facilitates rounding-error analysis

§ Can be updated efficiently to reflect new information

§ Has led to highly effective black-box software

Source: Stewart 2000.
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Low-Rank Matrix Approximation

A ≈ B C,
m× n m× k k × n.

Benefits:

§ Exposes structure of the matrix

§ Allows efficient storage

§ Facilitates multiplication with vectors or other matrices

Applications:

§ Principal component analysis

§ Low-dimensional embedding of data

§ Approximating continuum operators with exponentially decaying spectra

§ Model reduction for PDEs with rapidly oscillating coefficients
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Approximation of Massive Data

§ Problem: Major cost for numerical algorithms is data transfer

§ Cost scales, roughly, with number of passes not amount of arithmetic

§ Random access to data is expensive, so classical algorithms may fail

§ Assume a matrix–matrix product with data matrix takes one pass

§ Matrix multiplication is efficient in many architectures:

§ Graphics processing units

§ Multi-core processors

§ Parallel computers

§ Distributed systems
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Model Problem

Given:

§ An m× n matrix A with m ≥ n
§ Target rank k

§ Oversampling parameter p

Construct an n× (k + p) matrix Q with orthonormal columns s.t.

‖A−QQ∗A‖ ≈ min
rank(B)≤k

‖A−B‖ ,

§ QQ∗ is the orthogonal projector onto the range of Q

§ The basis Q can be used to construct matrix decompositions
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From Basis to Decomposition

Problem: Given the basis Q, where do we get a factorization?

Example: Singular value decomposition

Assume A is m× n and Q is n× k where A ≈ QQ∗A.

1. Form k × n matrix B = Q∗A with one pass

2. Factor B = UΣV ∗ at cost O(k2n)

3. Conclude A ≈ (QU)ΣV ∗.

Total Cost: One pass + one multiply (m× n× k) + O(k2n) flops
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Random Sampling: Intuition
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Proto-Algorithm for Model Problem

§ Converting this intuition into a computational procedure...

Input: An m× n matrix A, a target rank k, an oversampling parameter p

Output: An m× (k + p) matrix Q with orthonormal columns

1. Draw an n× (k + p) random matrix Ω.

2. Form the matrix product Y = AΩ.

3. Construct an orthonormal basis Q for the range of Y .

Major Players: Deshpande, Drineas, Frieze, Kannan, Mahoney,

Martinsson, Papadimitriou, Rokhlin, Sarlos, Tygert, Vempala (1998–2009)
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Implementation Issues

Q: How much oversampling?

A: Remarkably, p = 5 or p = 10 is usually adequate!

Q: What random matrix?

A: For this application, standard Gaussian works nicely.

Q: How do we do the matrix–matrix multiply?

A: Exploit the computational architecture.

Q: How do we compute the orthonormal basis?

A: Carefully... Double Gram–Schmidt or Householder reflectors.

Q: How do we pick k?

A: Can be done adaptively using a randomized error estimator.
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Total Costs for Approximate k-SVD

Proto-Algorithm:

1 pass + 2 multiplies (m× n× k) + k2(m+ n) flops

Classical Sparse Methods:

k passes + k multiplies (m× n× 1) + k2(m+ n) flops

Classical Dense Methods:

k passes (or more) + mnk flops
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Proto-Algorithm + Power Scheme

Problem: The singular values of the data matrix often decay slowly

Remedy: Apply the proto-algorithm to (AA∗)qA for small q

Input: An m× n matrix A, a target rank k, an oversampling parameter p

Output: An m× (k + p) matrix Q with orthonormal columns

1. Draw an n× (k + p) random matrix Ω.

2. Form the matrix product Y = (AA∗)qAΩ by sequential multiplication.

3. Construct an orthonormal basis Q for the range of Y .

Total Cost: q passes + q multiplies (m× n× k) + O(kmn) flops.
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Eigenfaces

§ Database consists of 7, 254 photographs with 98, 304 pixels each

§ Form 98, 304× 7, 254 data matrix Ã

§ Total storage: 5.4 Gigabytes (uncompressed)

§ Center each column and scale to unit norm to obtain A

§ The dominant left singular vectors are called eigenfaces

§ Attempt to compute first 100 eigenfaces using power scheme

Image: Scholarpedia article “Eigenfaces,” 12 October 2009
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42 HALKO, MARTINSSON, AND TROPP

matrix.
Our goal then is to compute an approximate SVD of the matrix A. Represented

as an array of double-precision real numbers, A would require 5.4GB of storage, which
does not fit within the fast memory of many machines. It is possible to compress the
database down to at 57MB or less (in JPEG format), but then the data would have
to be uncompressed with each sweep over the matrix. Furthermore, the matrix A has
slowly decaying singular values, so we need to use the power scheme, Algorithm 4.3,
to capture the range of the matrix accurately.

To address these concerns, we implemented the power scheme to run in a pass-
efficient manner. An additional difficulty arises because the size of the data makes it
prohibitively expensive to calculate the actual error e` incurred by the approximation
or to determine the minimal error σ`+1. To estimate the errors, we use the technique
described in Remark 4.1.

Figure 7.8 describes the behavior of the power scheme, which is similar to its
performance for the graph Laplacian in §7.3. When the exponent q = 0, the ap-
proximation of the data matrix is very poor, but it improves quickly as q increases.
Likewise, the estimate for the spectrum of A appears to converge rapidly; the largest
singular values are already quite accurate when q = 1. We see essentially no improve-
ment in the estimates after the first 3–5 passes over the matrix.

0 20 40 60 80 100
10

0

10
1

10
2

 

 

0 20 40 60 80 100
10

0

10
1

10
2Approximation error e` Estimated Singular Values σj

M
a
g
n
it

u
d
e

Minimal error (est)
q = 0
q = 1
q = 2
q = 3

` j

Fig. 7.8. Computing eigenfaces. For varying exponent q, one trial of the power scheme,
Algorithm 4.3, applied to the 98, 304 × 7, 254 matrix A described in §7.4. (Left) Approximation
errors as a function of the number ` of random samples. The red line indicates the minimal errors
as estimated by the singular values computed using ` = 100 and q = 3. (Right) Estimates for the
100 largest eigenvalues given ` = 100 random samples.

7.5. Performance of structured random matrices. Our final set of experi-
ments illustrates that the structured random matrices described in §4.6 lead to matrix
approximation algorithms that are both fast and accurate.
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Approximating a Helmholtz Integral Operator
38 HALKO, MARTINSSON, AND TROPP
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Fig. 7.2. Approximating a Laplace integral operator. One execution of Algorithm 4.2 for the
200 × 200 input matrix A described in §7.1. The number ` of random samples varies along the
horizontal axis; the vertical axis measures the base-10 logarithm of error magnitudes. The dashed
vertical lines mark the points during execution at which Figure 7.3 provides additional statistics.
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Fig. 7.3. Error statistics for approximating a Laplace integral operator. 2,000 trials of Al-
gorithm 4.2 applied to a 200 × 200 matrix approximating the integral operator (7.1). The panels
isolate the moments at which ` = 25, 50, 75, 100 random samples have been drawn. Each solid point
compares the estimated error f` versus the actual error e` in one trial; the open circle indicates the
trial detailed in Figure 7.2. The dashed line identifies the minimal error σ`+1, and the solid line
marks the contour where the error estimator would equal the actual error.
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Error Bound for Proto-Algorithm

Theorem 1. [HMT 2009] Assume

§ the matrix A is m× n with m ≥ n;

§ the optimal error σk+1 = minrank(B)≤k ‖A−B‖;
§ the test matrix Ω is n× (k + p) standard Gaussian.

Then the basis Q computed by the proto-algorithm satisfies

E ‖A−QQ∗A‖ ≤
[
1 +

4
√
k + p

p− 1
· √n

]
σk+1.

The probability of a substantially larger error is negligible.
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Error Bound for Power Scheme

Theorem 2. [HMT 2009] Assume

§ the matrix A is m× n with m ≥ n;

§ the optimal error σk+1 = minrank(B)≤k ‖A−B‖;
§ the test matrix Ω is n× (k + p) standard Gaussian.

Then the basis Q computed by the proto-algorithm satisfies

E ‖A−QQ∗A‖ ≤
[
1 +

4
√
k + p

p− 1
· √n

]1/q

σk+1.

The probability of a substantially larger error is negligible.

§ The power scheme drives the extra factor to one exponentially fast!
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Inner Workings I

Assume

§ A is m× n with SVD

k n− k
A = U

[
Σ1

Σ2

] [
V ∗1
V ∗2

]
k

n− k

§ Let Ω be a test matrix, decomposed as

Ω1 = V ∗1 Ω and Ω2 = V ∗2 Ω.

§ Construct the sample matrix Y = AΩ.

Theorem 3. [BMD09, HMT09] When Ω1 has full row rank,

‖(I− PY )A‖2 ≤ ‖Σ2‖2 +
∥∥Σ2Ω2Ω

†
1

∥∥2
.
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Inner Workings II

§ When Ω is Gaussian, Ω1 and Ω2 are independent.

§ Taking the expectation w.r.t. Ω2 first...

E2

∥∥Σ2Ω2Ω
†
1

∥∥ ≤ ‖Σ2‖
∥∥Ω†1∥∥F

+ ‖Σ2‖F
∥∥Ω†1∥∥.

§ The expectations of the norms w.r.t. Ω1 satisfy

E
∥∥Ω†1∥∥F

≤
√

k

p− 1
and E

∥∥Ω†1∥∥ ≤ e
√
k + p

p
.

§ Conclude

E ‖(I− PY )A‖ ≤

1 +

√
k

p− 1

σk+1 +
e
√
k + p

p

(∑∞

j=k+1
σ2

j

)1/2
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Result for Structured Random Matrices

Theorem 4. [HMT09] Suppose that Ω is an n× ` SRFT matrix where

` & (k + log n) log k.

Then

‖(I− PY )A‖ ≤
√

1 +
Cn
`
· σk+1,

except with probability k−c.

§ Follows from same approach

§ Uses Rudelson’s lemma to show that random rows from a randomized

Fourier transform form a well-conditioned set
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Faster SVD with Structured Randomness
RANDOMIZED ALGORITHMS FOR MATRIX APPROXIMATION 45
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Fig. 7.9. Acceleration factor. The relative cost of computing an `-term partial SVD of an n×n
Gaussian matrix using direct, a benchmark classical algorithm, versus each of the three competitors
described in §7.5. The solid red curve shows the speedup using an SRFT test matrix, and the dotted
blue curve shows the speedup with a Gaussian test matrix. The dashed green curve indicates that a
full SVD computation using classical methods is substantially slower. Table 7.1 reports the absolute
runtimes that yield the circled data points.

Remark 7.1. The running times reported in Table 7.1 and in Figure 7.9 depend
strongly on both the computer hardware and the coding of the algorithms. The ex-
periments reported here were performed on a standard office desktop with a 3.2 GHz
Pentium IV processor and 2 GB of RAM. The algorithms were implemented in For-
tran 90 and compiled with the Lahey compiler. The Lahey versions of BLAS and
LAPACK were used to accelerate all matrix–matrix multiplications, as well as the
SVD computations in Algorithms 5.1 and 5.2. We used the code for the modified
SRFT (4.8) provided in the publicly available software package id dist [93].
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To learn more...

E-mail:

§ jtropp@acm.caltech.edu

Web: http://www.acm.caltech.edu/~jtropp

Papers:

§ HMT, “Finding Structure with Randomness: Stochastic Algorithms for Computing

Approximate Matrix Decompositions,” submitted 2009
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