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Introduction Fp Algorithm Lower Bounds Conclusion

Streaming moments: problem formulation

Model

• x = (x1, x2, . . . , xn) starts off as ~0

• m updates (i1, v1), (i2, v2), . . . , (im, vm)

• Update (i , v) causes change xi ← xi + v

• v ∈ {−M, . . . ,M}

Goal: Output Fp
def
=

n∑
i=1

|xi |p = ‖x‖pp
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Streaming moments: objectives

Objectives

• Minimize space usage

• Minimize update time

Trivial solutions

• Keep x in memory: O(n log(mM)) space / O(1) time

• Keep stream in memory: O(m log(nM)) space / O(1) time

Goal: Get polylogarithmic dependence on n,m
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Streaming moments: bad news

Alon, Matias, Szegedy ’99: No sublinear space algorithms without

• Approximation (allow output to be (1± ε)Fp)

• Randomization (allow 1% failure probability)

New goal: Output (1± ε)Fp with probability 99%

More bad news: Polynomial space required for p > 2
([BJKS ’02] and [CKS ’03])

Newer goal: Output (1± ε)Fp with probability 99% for 0 ≤ p ≤ 2



Introduction Fp Algorithm Lower Bounds Conclusion

Streaming moments: bad news

Alon, Matias, Szegedy ’99: No sublinear space algorithms without

• Approximation (allow output to be (1± ε)Fp)

• Randomization (allow 1% failure probability)

New goal: Output (1± ε)Fp with probability 99%

More bad news: Polynomial space required for p > 2
([BJKS ’02] and [CKS ’03])

Newer goal: Output (1± ε)Fp with probability 99% for 0 ≤ p ≤ 2



Introduction Fp Algorithm Lower Bounds Conclusion

Streaming moments: bad news

Alon, Matias, Szegedy ’99: No sublinear space algorithms without

• Approximation (allow output to be (1± ε)Fp)

• Randomization (allow 1% failure probability)

New goal: Output (1± ε)Fp with probability 99%

More bad news: Polynomial space required for p > 2
([BJKS ’02] and [CKS ’03])

Newer goal: Output (1± ε)Fp with probability 99% for 0 ≤ p ≤ 2



Introduction Fp Algorithm Lower Bounds Conclusion

Contributions
(0 < p ≤ 2)

(Notation: N = min{n,m})

Ref Upper bound Lower bound Update time

AMS’99 O(ε−2 log(mM)) (p=2) Ω(log N) O(1) (*)

FKSV’99 (**) O(ε−2 log(mM)) (p=1) ———— O
“

log(NM)

ε2

”
Indyk’06, Li’08 O(ε−2 log(mM) log N) ———— O(ε−2)

GC’07 O(ε−(2+p) log2(N) log(mM)) ———— polylog(mM)

Woodruff’04 ———— Ω(ε−2) ————

This work O(ε−2 log(mM)) Ω(ε−2 log(mM)) Õ(ε−2)

(*) achieved by CCF’02, TZ’04, (**) L1-difference only
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Fp (0 < p < 2)
p-stable distributions

Definition (Zolotarev ’86)

For 0 < p ≤ 2, there exists a probability distribution Dp called the
p-stable distribution such that if Q1, . . . ,Qn ∼ Dp are
independent, then

∑n
i=1 Qixi ∼ ‖x‖pDp.

(In short: Dp carries information about Lp norms)

• p = 2: Gaussian

• p = 1: Cauchy

• p = 1/2: Lévy
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Algorithms based on p-stable sketch matrices

A =

 A1,1 · · · A1,n
...

. . .
...

Ar ,1 · · · Ar ,n

 , the Ai ,j are i.i.d. from Dp,

Maintain Ax = y

• Idea introduced by Indyk ’06

• Indyk ’06: Estimate Fp as median{|yj |p}rj=1

• Li ’08: Estimate Fp as
Qr

j=1 |yj |p/r

[ 2
π

Γ( p
r )Γ(1− 1

r ) sin(π2 ·
p
r )]

r

• Both cases: r = Θ(1/ε2)
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Too much randomness

• In Indyk’06 and Li’08, Ω(n/ε2) bits needed to store matrix A

• Indyk derandomized using Nisan’s pseudorandom generator
(but blowed up space)

Is there a more efficient derandomization?
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Our Contributions

Yes, via k-wise independence!

• For fixed i , make the Ai ,j k-wise independent

• Make the seeds used to generate rows of A pairwise
independent

• k = Θ̃(1/εp) fools Indyk’s estimator

• A different estimator works with
k = Θ(log(1/ε)/ log log(1/ε)).
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Our Contributions

A different estimator
(works with k = O(log(1/ε)/ log log(1/ε)))

1. Maintain Ax = y and A′x = y ′.
2. A has k = Θ(log(1/ε)/ log log(1/ε)), r = Θ(1/ε2).
3. A′ has k ′, r ′ = Θ(1).
4. y ′med ← median{|y ′j |}r

′
j=1.

5. Output −y ′pmed · ln
(

1
r

∑r
j=1 cos

(
yj

y ′med

))
.
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Analyzing median Fp algorithm
(full independence)

An argument for the median:

Define

I[a,b](x) =

{
1, if x ∈ [a, b],

0, otherwise

• Q =
∑

i Qixi .

• “median(|Q|/‖x‖p) = 1” means E[I[−1,1](Q/‖x‖p)] = 1/2.

• E[I[−1+ε,1−ε](Q/‖x‖p)] = 1/2−Θ(ε)

• E[I[−1−ε,1+ε](Q/‖x‖p)] = 1/2 + Θ(ε)

• Take r = Θ(1/ε2) trials Q1, . . . ,Qr . Number of counters
inside interval is concentrated by Chebyshev.

⇒ median of the |Qj | is (1±Θ(ε))‖x‖p with probability 2/3
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Analyzing median Fp algorithm
(k-wise independence)

One possible path

• Replace I[a,b] with a well-approximating low-degree
polynomial.

• k-wise independence fools polynomials.

What we actually do (for good reason)

• Replace I[a,b] with a well-approximating smooth function Ĩ[a,b].

• Show Ĩ[a,b] is fooled by k-wise independence via Taylor’s
theorem.
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Defining Ĩ[a,b]

FT-mollification

Define

b(x) =

e
− x2

1−x2 for |x | < 1

0 otherwise

and

Ĩ c
[a,b](x) =

1

2π
(c · b̂(ct) ∗ I[a,b](t))(x)

Then, for c > 1,

i. ‖(Ĩ c
[a,b])

(`)‖∞ = O(c`) for ` ≥ 0.

ii. For c = Õ(1/ε), |̃I c
[a,b] − I[a,b]| < ε except potentially at a± ε

and b ± ε.

For c large, Ĩ c
[a,b] looks like I[a,b].
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Proof Outline

• Let Ri be k-wise independent from Dp, and Qi be i.i.d.

• Let R =
∑

i Rixi and Q =
∑

i Qixi .

• Suppose ‖x‖p = 1.

Want: E[I[a,b](Q)] ≈ε E[I[a,b](R)]

Proof: E[I[a,b](Q)] ≈ε E[̃I c
[a,b](Q)] ≈ε E[̃I c

[a,b](R)] ≈ε E[I[a,b](R)]

(1)→(2) Ĩ c well-approximates I except for two length-O(ε) strips. Use
anticoncentration.

(2)→(3) Main technical lemma.

(3)→(4) Same as (1)→(2), but must prove anticoncentration.
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Main technical lemma

Lemma

• ‖f (`)(x)‖∞ = O(α`) for all ` ≥ 0

• k = max{log(1/ε), αp}
• Ri are Θ(k)-wise indep., Qi are fully indep., from Dp

• R =
∑

i Rixi ,Q =
∑

i Qixi

• ‖x‖p = O(1)

⇒ |E[f (R)]− E[f (Q)]| < ε
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Proof strategy

• Approximate f by a polynomial (Taylor-expand), and bound
expected difference using Taylor’s theorem, by analyzing
moments E[X k

i ] and high-order derivatives of f

• Problem: Dp has infinite moments for p < 2
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Proof strategy (modified)

Linearity of expectation:

E[f (R)] = E

[∑
A∈A

1A · f (R)

]
=
∑
A∈A

E[1A · f (R)]

where events in A partition probability space

What events should we consider? Truncation

Define random variables:

R ′i =

{
Ri , |Rixi | ≤ λ
0, otherwise
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Proof strategy (modified)

R ′i =

{
Ri |Rixi | ≤ λ
0 otherwise

For S ⊆ [n], event 1S indicates that S is exactly the set of
truncated R ′i

E[f (R)] =
∑

S⊆[n]

E [1S · f (R)]

=
∑

S⊆[n]

E

[
1S · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

Problem: How to reason about 1S using k-wise indep.?
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Dealing with 1S

For S ⊆ [n], 1′S indicates that S is a subset of the truncated R ′i

Use inclusion-exclusion!

1S = 1′S ·

(∏
i /∈S

(
1− 1′{i}

))
=

∑
T⊆[n]\S

(−1)|T |1′S∪T

Now

E[f (R)] =
∑

S⊆[n]

∑
T⊆[n]\S

(−1)|T |E

[
1′S∪T · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

Still a problem: How to deal with large S ,T?
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Approximate Inclusion-Exclusion

Introduced to streaming by Bar-Yossef et al. ’02
(analyzed balls and bins with limited independence)

E[f (R)] =
∑

S⊆[n]

∑
T⊆[n]\S

(−1)|T |E

[
1′S∪T · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

?
≈

∑
S⊆[n]
|S |≤Ck

∑
T⊆[n]\S
|T |≤Ck

(−1)|T |E

[
1′S∪T · f

(∑
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Proof Outline

• Let Ri be k-wise independent from Dp, and Qi be i.i.d.

• Let R =
∑

i Rixi and Q =
∑

i Qixi .

• Suppose ‖x‖p = 1.

Want: E[I[a,b](Q)] ≈ε E[I[a,b](R)]

Proof: E[I[a,b](Q)] ≈ε E[̃I c
[a,b](Q)] ≈ε E[̃I c

[a,b](R)] ≈ε E[I[a,b](R)]

(1)→(2) Ĩ c well-approximates I except for two length-O(ε) strips. Use
anticoncentration.

(2)→(3) Main technical lemma.

(3)→(4) Same as (1)→(2), but must prove anticoncentration.
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Anticoncentration of R

x
K3 K2 K1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

f (x) = −
∫ x/ε

−∞

sin4(y)

y3
dy

• ‖f (`)‖∞ = O(1/ε)`

⇒ fooled with k = O(1/εp)

• Easy to show E[f (Q)] = O(ε)

• ⇒ E[f (R)] = O(ε) by main technical
lemma

• ⇒ anticoncentration in interval [−ε, ε]

Shift f to show anticoncentration in any width-O(ε) interval.
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Intuition for the new estimator

Our new estimator’s final step:

“Let y ′median = median{|y ′j |}r
′

j=1.

Output −y ′pmedian · ln
(

1
r

∑r
j=1 cos

(
yj

y ′median

))
.”

• We know y ′median = Θ(‖x‖p).

• Apply main technical lemma with f (x) = cos(x) to refine
y ′median to a (1± ε)-approximation.
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Correcting to (1± ε)-approximation

Z ∼ Dp

E[cos(BZ )] = E

[
e iBZ + e−iBZ

2

]
Can look at Fourier transform of pdf of Dp to show
E[cos(BZ )] = e−|B|

p

• Apply technical lemma to f
(

yj

y ′median

)
with f (x) = cos(x)

• Use Chebyshev’s inequality
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Lower bounds
Streaming lower bounds via communication complexity

Alice Bob

x ∈ X y ∈ Y

• Alice, Bob know f : X × Y → {0, 1}
• Bob needs to compute f (x , y)

• Communication lower bounds ⇒ streaming space lower
bounds (Alon, Matias, Szegedy ’99)
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Previous Fp lower bound

Woodruff ’04 and Jayram, Kumar, Sivakumar ’08

Indexing

• X = {0, 1}t , Y = {1, . . . , t}
• f (x , y) = xy

Gap-Hamming

• X = {0, 1}t′ , Y = {0, 1}t′

•

f (x , y) =

{
1 ∆(x , y) ≥ t′

2 +
√

t ′

0 ∆(x , y) ≤ t′

2 −
√

t ′

Indexing
JKS′08−−−−→ Gap-Hamming

Woodruff′04−−−−−−→ Fp

Led to Ω(min{N, ε−2}) lower bound for Fp
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The new Fp lower bound

Augmented-Indexing

• X = {0, 1}t , Y = {1, . . . , t}
• Bob also gets xi for i > y

• f (x , y) = xy

Requires Ω(t) communication (MNSW ’98)
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An F1 lower bound

Theorem
(1± ε)-approximation of F1 requires Ω(min{N, ε−2 log M}) space

Proof.

1/ε2 coordinates

t = min{ε2N , log M} blocks

Alice:
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An F1 lower bound

Step 1:

1/ε2 coordinates

t = min{ε2N , log M} blocks

Alice:

Bob: y

Step 2:

Gap-Ham
JKS ’08

Indexing

Θ(1/ε2)
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Step 3: For ith Gap-Ham vector zi , if zi ,j = 1 Alice puts ((i , j), 2i )
in stream

Step 4: Alice sends algorithm state + weight of each block

Step 5: Bob deletes contribution of blocks larger than his own
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Open problems

• Fp in optimal space with O(1) update time?

• Find other applications for FT-mollification.
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Open problems (some progress)

• Fp in optimal space with O(1) update time?

[N., Woodruff] p = 1 with ε−2 logO(1)(nmM) space,
logO(1)(nmM) update time

• Find other applications for FT-mollification.

[Kane, N., Woodruff] FT-mollification actually gives an
alternative proof that bounded independence fools regular
halfspaces ([DGJ+09]).

[Diakonikolas, Kane, N.] Showed bounded independence fools
degree-2 threshold functions, via FT-mollification.
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Other news announcements

[Kane, N., Woodruff]: Optimal distinct elements algorithm.

• O(ε−2 + log(n)) bits of space

• O(1) worst-case update and reporting times
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Fooling regular halfspaces

• Ha,θ = {x : 〈a, x〉 ≥ θ} (a halfspace).

• Theorem [DGJ+09]: Pr[x ∈ Ha,θ] ≈ε Pr[y ∈ Ha,θ] for
k = Õ(1/ε2). xi are i.i.d., yi are k-wise independent.

• The [DGJ+09] proof outline:

1. Reduce to case when |ai | ≤ ε for all i
2. Show the theorem in the case when every |ai | ≤ ε (the

“regular” case)

• Proof of 2 via FT-mollification:
E[I[θ,∞)(〈a, x〉)] ≈ε E[̃I c

[θ,∞)(〈a, x〉)] ≈ε E[̃I c
[θ,∞)(〈a, y〉)] ≈ε

E[I[θ,∞)(〈a, y〉)].
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Fooling degree-2 threshold functions
Statement: E[sign(p(x))] ≈ε E[sign(p(y))] for k = poly(1/ε), p a
degree-2 polynomial.

• Some savings in the known applications: (1) Ω(1/εp)-wise
independence fools Indyk’s estimator, (2) Ω(1/ε2)-wise
independence ε-fools regular halfspaces (no more logs).

• A new statement: Bounded independence fools
Goemans-Williamson hyperplane rounding.

• Idea of proof:

1. p = p1 − p2 + p3 + p4 + C , p1, p2 pos. semidef. with no small
non-zero eigenvalues, p3 indefinite with only small eigenvalues,
p4 a linear form, C a constant.

2. Let ∆ be the trace of the symmetric matrix associated with p3.
3. Define R ⊆ R4 by R = {z : z2

1 − z2
2 + z3 + z4 + ∆ + C > 0}.

4. E[IR(M(x))] ≈ε E[̃I c
R(M(x))] ≈ε E[̃I c

R(M(y))] ≈ε E[IR(M(y))]

for M(z) = (
√

p1(z),
√

p2(z), p3(z)−∆, p4(z)).
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