
Introduction Fp Algorithm Lower Bounds Conclusion

A Space Optimal Streaming Algorithm for
Sketching Small Moments

Daniel M. Kane Jelani Nelson David P. Woodruff
Harvard MIT IBM Almaden

December 18, 2009

Introduction Fp Algorithm Lower Bounds Conclusion

Streaming moments: problem formulation

Model

• x = (x1, x2, . . . , xn) starts off as ~0

• m updates (i1, v1), (i2, v2), . . . , (im, vm)

• Update (i , v) causes change xi ← xi + v

• v ∈ {−M, . . . ,M}

Goal: Output Fp
def
=

n∑
i=1

|xi |p = ‖x‖pp

Introduction Fp Algorithm Lower Bounds Conclusion

Streaming moments: problem formulation

Model

• x = (x1, x2, . . . , xn) starts off as ~0

• m updates (i1, v1), (i2, v2), . . . , (im, vm)

• Update (i , v) causes change xi ← xi + v

• v ∈ {−M, . . . ,M}

Goal: Output Fp
def
=

n∑
i=1

|xi |p = ‖x‖pp

Introduction Fp Algorithm Lower Bounds Conclusion

Streaming moments: objectives

Objectives

• Minimize space usage

• Minimize update time

Trivial solutions

• Keep x in memory: O(n log(mM)) space / O(1) time

• Keep stream in memory: O(m log(nM)) space / O(1) time

Goal: Get polylogarithmic dependence on n,m

Introduction Fp Algorithm Lower Bounds Conclusion

Streaming moments: bad news

Alon, Matias, Szegedy ’99: No sublinear space algorithms without

• Approximation (allow output to be (1± ε)Fp)

• Randomization (allow 1% failure probability)

New goal: Output (1± ε)Fp with probability 99%

More bad news: Polynomial space required for p > 2
([BJKS ’02] and [CKS ’03])

Newer goal: Output (1± ε)Fp with probability 99% for 0 ≤ p ≤ 2

Introduction Fp Algorithm Lower Bounds Conclusion

Streaming moments: bad news

Alon, Matias, Szegedy ’99: No sublinear space algorithms without

• Approximation (allow output to be (1± ε)Fp)

• Randomization (allow 1% failure probability)

New goal: Output (1± ε)Fp with probability 99%

More bad news: Polynomial space required for p > 2
([BJKS ’02] and [CKS ’03])

Newer goal: Output (1± ε)Fp with probability 99% for 0 ≤ p ≤ 2

Introduction Fp Algorithm Lower Bounds Conclusion

Streaming moments: bad news

Alon, Matias, Szegedy ’99: No sublinear space algorithms without

• Approximation (allow output to be (1± ε)Fp)

• Randomization (allow 1% failure probability)

New goal: Output (1± ε)Fp with probability 99%

More bad news: Polynomial space required for p > 2
([BJKS ’02] and [CKS ’03])

Newer goal: Output (1± ε)Fp with probability 99% for 0 ≤ p ≤ 2

Introduction Fp Algorithm Lower Bounds Conclusion

Contributions
(0 < p ≤ 2)

(Notation: N = min{n,m})

Ref Upper bound Lower bound Update time

AMS’99 O(ε−2 log(mM)) (p=2) Ω(log N) O(1) (*)

FKSV’99 (**) O(ε−2 log(mM)) (p=1) ———— O
“

log(NM)

ε2

”
Indyk’06, Li’08 O(ε−2 log(mM) log N) ———— O(ε−2)

GC’07 O(ε−(2+p) log2(N) log(mM)) ———— polylog(mM)

Woodruff’04 ———— Ω(ε−2) ————

This work O(ε−2 log(mM)) Ω(ε−2 log(mM)) Õ(ε−2)

(*) achieved by CCF’02, TZ’04, (**) L1-difference only

Introduction Fp Algorithm Lower Bounds Conclusion

Fp (0 < p < 2)
p-stable distributions

Definition (Zolotarev ’86)

For 0 < p ≤ 2, there exists a probability distribution Dp called the
p-stable distribution such that if Q1, . . . ,Qn ∼ Dp are
independent, then

∑n
i=1 Qixi ∼ ‖x‖pDp.

(In short: Dp carries information about Lp norms)

• p = 2: Gaussian

• p = 1: Cauchy

• p = 1/2: Lévy

Introduction Fp Algorithm Lower Bounds Conclusion

Fp (0 < p < 2)
p-stable distributions

Definition (Zolotarev ’86)

For 0 < p ≤ 2, there exists a probability distribution Dp called the
p-stable distribution such that if Q1, . . . ,Qn ∼ Dp are
independent, then

∑n
i=1 Qixi ∼ ‖x‖pDp.

(In short: Dp carries information about Lp norms)

• p = 2: Gaussian

• p = 1: Cauchy

• p = 1/2: Lévy

Introduction Fp Algorithm Lower Bounds Conclusion

Algorithms based on p-stable sketch matrices

A =

 A1,1 · · · A1,n
...

. . .
...

Ar ,1 · · · Ar ,n

 , the Ai ,j are i.i.d. from Dp,

Maintain Ax = y

• Idea introduced by Indyk ’06

• Indyk ’06: Estimate Fp as median{|yj |p}rj=1

• Li ’08: Estimate Fp as
Qr

j=1 |yj |p/r

[2
π

Γ(p
r)Γ(1− 1

r) sin(π2 ·
p
r)]

r

• Both cases: r = Θ(1/ε2)

Introduction Fp Algorithm Lower Bounds Conclusion

Algorithms based on p-stable sketch matrices

A =

 A1,1 · · · A1,n
...

. . .
...

Ar ,1 · · · Ar ,n

 , the Ai ,j are i.i.d. from Dp,

Maintain Ax = y

• Idea introduced by Indyk ’06

• Indyk ’06: Estimate Fp as median{|yj |p}rj=1

• Li ’08: Estimate Fp as
Qr

j=1 |yj |p/r

[2
π

Γ(p
r)Γ(1− 1

r) sin(π2 ·
p
r)]

r

• Both cases: r = Θ(1/ε2)

Introduction Fp Algorithm Lower Bounds Conclusion

Too much randomness

• In Indyk’06 and Li’08, Ω(n/ε2) bits needed to store matrix A

• Indyk derandomized using Nisan’s pseudorandom generator
(but blowed up space)

Is there a more efficient derandomization?

Introduction Fp Algorithm Lower Bounds Conclusion

Too much randomness

• In Indyk’06 and Li’08, Ω(n/ε2) bits needed to store matrix A

• Indyk derandomized using Nisan’s pseudorandom generator
(but blowed up space)

Is there a more efficient derandomization?

Introduction Fp Algorithm Lower Bounds Conclusion

Too much randomness

• In Indyk’06 and Li’08, Ω(n/ε2) bits needed to store matrix A

• Indyk derandomized using Nisan’s pseudorandom generator
(but blowed up space)

Is there a more efficient derandomization?

Introduction Fp Algorithm Lower Bounds Conclusion

Our Contributions

Yes, via k-wise independence!

• For fixed i , make the Ai ,j k-wise independent

• Make the seeds used to generate rows of A pairwise
independent

• k = Θ̃(1/εp) fools Indyk’s estimator

• A different estimator works with
k = Θ(log(1/ε)/ log log(1/ε)).

Introduction Fp Algorithm Lower Bounds Conclusion

Our Contributions

Yes, via k-wise independence!

• For fixed i , make the Ai ,j k-wise independent

• Make the seeds used to generate rows of A pairwise
independent

• k = Θ̃(1/εp) fools Indyk’s estimator

• A different estimator works with
k = Θ(log(1/ε)/ log log(1/ε)).

Introduction Fp Algorithm Lower Bounds Conclusion

Our Contributions

A different estimator
(works with k = O(log(1/ε)/ log log(1/ε)))

1. Maintain Ax = y and A′x = y ′.
2. A has k = Θ(log(1/ε)/ log log(1/ε)), r = Θ(1/ε2).
3. A′ has k ′, r ′ = Θ(1).
4. y ′med ← median{|y ′j |}r

′
j=1.

5. Output −y ′pmed · ln
(

1
r

∑r
j=1 cos

(
yj

y ′med

))
.

Introduction Fp Algorithm Lower Bounds Conclusion

Analyzing median Fp algorithm
(full independence)

An argument for the median:

Define

I[a,b](x) =

{
1, if x ∈ [a, b],

0, otherwise

• Q =
∑

i Qixi .

• “median(|Q|/‖x‖p) = 1” means E[I[−1,1](Q/‖x‖p)] = 1/2.

• E[I[−1+ε,1−ε](Q/‖x‖p)] = 1/2−Θ(ε)

• E[I[−1−ε,1+ε](Q/‖x‖p)] = 1/2 + Θ(ε)

• Take r = Θ(1/ε2) trials Q1, . . . ,Qr . Number of counters
inside interval is concentrated by Chebyshev.

⇒ median of the |Qj | is (1±Θ(ε))‖x‖p with probability 2/3

Introduction Fp Algorithm Lower Bounds Conclusion

Analyzing median Fp algorithm
(full independence)

An argument for the median:

Define

I[a,b](x) =

{
1, if x ∈ [a, b],

0, otherwise

• Q =
∑

i Qixi .

• “median(|Q|/‖x‖p) = 1” means E[I[−1,1](Q/‖x‖p)] = 1/2.

• E[I[−1+ε,1−ε](Q/‖x‖p)] = 1/2−Θ(ε)

• E[I[−1−ε,1+ε](Q/‖x‖p)] = 1/2 + Θ(ε)

• Take r = Θ(1/ε2) trials Q1, . . . ,Qr . Number of counters
inside interval is concentrated by Chebyshev.

⇒ median of the |Qj | is (1±Θ(ε))‖x‖p with probability 2/3

Introduction Fp Algorithm Lower Bounds Conclusion

Analyzing median Fp algorithm
(full independence)

An argument for the median:

Define

I[a,b](x) =

{
1, if x ∈ [a, b],

0, otherwise

• Q =
∑

i Qixi .

• “median(|Q|/‖x‖p) = 1” means E[I[−1,1](Q/‖x‖p)] = 1/2.

• E[I[−1+ε,1−ε](Q/‖x‖p)] = 1/2−Θ(ε)

• E[I[−1−ε,1+ε](Q/‖x‖p)] = 1/2 + Θ(ε)

• Take r = Θ(1/ε2) trials Q1, . . . ,Qr . Number of counters
inside interval is concentrated by Chebyshev.

⇒ median of the |Qj | is (1±Θ(ε))‖x‖p with probability 2/3

Introduction Fp Algorithm Lower Bounds Conclusion

Analyzing median Fp algorithm
(k-wise independence)

One possible path

• Replace I[a,b] with a well-approximating low-degree
polynomial.

• k-wise independence fools polynomials.

What we actually do (for good reason)

• Replace I[a,b] with a well-approximating smooth function Ĩ[a,b].

• Show Ĩ[a,b] is fooled by k-wise independence via Taylor’s
theorem.

Introduction Fp Algorithm Lower Bounds Conclusion

Analyzing median Fp algorithm
(k-wise independence)

One possible path

• Replace I[a,b] with a well-approximating low-degree
polynomial.

• k-wise independence fools polynomials.

What we actually do (for good reason)

• Replace I[a,b] with a well-approximating smooth function Ĩ[a,b].

• Show Ĩ[a,b] is fooled by k-wise independence via Taylor’s
theorem.

Introduction Fp Algorithm Lower Bounds Conclusion

Defining Ĩ[a,b]

FT-mollification

Define

b(x) =

e
− x2

1−x2 for |x | < 1

0 otherwise

and

Ĩ c
[a,b](x) =

1

2π
(c · b̂(ct) ∗ I[a,b](t))(x)

Then, for c > 1,

i. ‖(Ĩ c
[a,b])

(`)‖∞ = O(c`) for ` ≥ 0.

ii. For c = Õ(1/ε), |̃I c
[a,b] − I[a,b]| < ε except potentially at a± ε

and b ± ε.

For c large, Ĩ c
[a,b] looks like I[a,b].

Introduction Fp Algorithm Lower Bounds Conclusion

Defining Ĩ[a,b]

FT-mollification

Define

b(x) =

e
− x2

1−x2 for |x | < 1

0 otherwise

and

Ĩ c
[a,b](x) =

1

2π
(c · b̂(ct) ∗ I[a,b](t))(x)

Then, for c > 1,

i. ‖(Ĩ c
[a,b])

(`)‖∞ = O(c`) for ` ≥ 0.

ii. For c = Õ(1/ε), |̃I c
[a,b] − I[a,b]| < ε except potentially at a± ε

and b ± ε.

For c large, Ĩ c
[a,b] looks like I[a,b].

Introduction Fp Algorithm Lower Bounds Conclusion

Defining Ĩ[a,b]

FT-mollification

Define

b(x) =

e
− x2

1−x2 for |x | < 1

0 otherwise

and

Ĩ c
[a,b](x) =

1

2π
(c · b̂(ct) ∗ I[a,b](t))(x)

Then, for c > 1,

i. ‖(Ĩ c
[a,b])

(`)‖∞ = O(c`) for ` ≥ 0.

ii. For c = Õ(1/ε), |̃I c
[a,b] − I[a,b]| < ε except potentially at a± ε

and b ± ε.

For c large, Ĩ c
[a,b] looks like I[a,b].

Introduction Fp Algorithm Lower Bounds Conclusion

Ĩ c
[−1,1] plots

x
K2 K1 0 1 2

0.2

0.4

0.6

0.8

1.0

c = 5

x
K2 K1 0 1 2

0.2

0.4

0.6

0.8

1.0

c = 9

x
K2 K1 0 1 2

0.2

0.4

0.6

0.8

1.0

c = 13

x
K2 K1 0 1 2

0.2

0.4

0.6

0.8

1.0

c = 17

Introduction Fp Algorithm Lower Bounds Conclusion

Proof Outline

• Let Ri be k-wise independent from Dp, and Qi be i.i.d.

• Let R =
∑

i Rixi and Q =
∑

i Qixi .

• Suppose ‖x‖p = 1.

Want: E[I[a,b](Q)] ≈ε E[I[a,b](R)]

Proof: E[I[a,b](Q)] ≈ε E[̃I c
[a,b](Q)] ≈ε E[̃I c

[a,b](R)] ≈ε E[I[a,b](R)]

(1)→(2) Ĩ c well-approximates I except for two length-O(ε) strips. Use
anticoncentration.

(2)→(3) Main technical lemma.

(3)→(4) Same as (1)→(2), but must prove anticoncentration.

Introduction Fp Algorithm Lower Bounds Conclusion

Proof Outline

• Let Ri be k-wise independent from Dp, and Qi be i.i.d.

• Let R =
∑

i Rixi and Q =
∑

i Qixi .

• Suppose ‖x‖p = 1.

Want: E[I[a,b](Q)] ≈ε E[I[a,b](R)]

Proof: E[I[a,b](Q)] ≈ε E[̃I c
[a,b](Q)] ≈ε E[̃I c

[a,b](R)] ≈ε E[I[a,b](R)]

(1)→(2) Ĩ c well-approximates I except for two length-O(ε) strips. Use
anticoncentration.

(2)→(3) Main technical lemma.

(3)→(4) Same as (1)→(2), but must prove anticoncentration.

Introduction Fp Algorithm Lower Bounds Conclusion

Proof Outline

• Let Ri be k-wise independent from Dp, and Qi be i.i.d.

• Let R =
∑

i Rixi and Q =
∑

i Qixi .

• Suppose ‖x‖p = 1.

Want: E[I[a,b](Q)] ≈ε E[I[a,b](R)]

Proof: E[I[a,b](Q)] ≈ε E[̃I c
[a,b](Q)] ≈ε E[̃I c

[a,b](R)] ≈ε E[I[a,b](R)]

(1)→(2) Ĩ c well-approximates I except for two length-O(ε) strips. Use
anticoncentration.

(2)→(3) Main technical lemma.

(3)→(4) Same as (1)→(2), but must prove anticoncentration.

Introduction Fp Algorithm Lower Bounds Conclusion

Main technical lemma

Lemma

• ‖f (`)(x)‖∞ = O(α`) for all ` ≥ 0

• k = max{log(1/ε), αp}
• Ri are Θ(k)-wise indep., Qi are fully indep., from Dp

• R =
∑

i Rixi ,Q =
∑

i Qixi

• ‖x‖p = O(1)

⇒ |E[f (R)]− E[f (Q)]| < ε

Introduction Fp Algorithm Lower Bounds Conclusion

Proof strategy

• Approximate f by a polynomial (Taylor-expand), and bound
expected difference using Taylor’s theorem, by analyzing
moments E[X k

i] and high-order derivatives of f

• Problem: Dp has infinite moments for p < 2

Introduction Fp Algorithm Lower Bounds Conclusion

Proof strategy

• Approximate f by a polynomial (Taylor-expand), and bound
expected difference using Taylor’s theorem, by analyzing
moments E[X k

i] and high-order derivatives of f

• Problem: Dp has infinite moments for p < 2

Introduction Fp Algorithm Lower Bounds Conclusion

Proof strategy (modified)

Linearity of expectation:

E[f (R)] = E

[∑
A∈A

1A · f (R)

]
=
∑
A∈A

E[1A · f (R)]

where events in A partition probability space

What events should we consider? Truncation

Define random variables:

R ′i =

{
Ri , |Rixi | ≤ λ
0, otherwise

Introduction Fp Algorithm Lower Bounds Conclusion

Proof strategy (modified)

Linearity of expectation:

E[f (R)] = E

[∑
A∈A

1A · f (R)

]
=
∑
A∈A

E[1A · f (R)]

where events in A partition probability space

What events should we consider?

Truncation

Define random variables:

R ′i =

{
Ri , |Rixi | ≤ λ
0, otherwise

Introduction Fp Algorithm Lower Bounds Conclusion

Proof strategy (modified)

Linearity of expectation:

E[f (R)] = E

[∑
A∈A

1A · f (R)

]
=
∑
A∈A

E[1A · f (R)]

where events in A partition probability space

What events should we consider? Truncation

Define random variables:

R ′i =

{
Ri , |Rixi | ≤ λ
0, otherwise

Introduction Fp Algorithm Lower Bounds Conclusion

Proof strategy (modified)

Linearity of expectation:

E[f (R)] = E

[∑
A∈A

1A · f (R)

]
=
∑
A∈A

E[1A · f (R)]

where events in A partition probability space

What events should we consider? Truncation

Define random variables:

R ′i =

{
Ri , |Rixi | ≤ λ
0, otherwise

Introduction Fp Algorithm Lower Bounds Conclusion

Proof strategy (modified)

R ′i =

{
Ri |Rixi | ≤ λ
0 otherwise

For S ⊆ [n], event 1S indicates that S is exactly the set of
truncated R ′i

E[f (R)] =
∑

S⊆[n]

E [1S · f (R)]

=
∑

S⊆[n]

E

[
1S · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

Problem: How to reason about 1S using k-wise indep.?

Introduction Fp Algorithm Lower Bounds Conclusion

Proof strategy (modified)

R ′i =

{
Ri |Rixi | ≤ λ
0 otherwise

For S ⊆ [n], event 1S indicates that S is exactly the set of
truncated R ′i

E[f (R)] =
∑

S⊆[n]

E [1S · f (R)]

=
∑

S⊆[n]

E

[
1S · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

Problem: How to reason about 1S using k-wise indep.?

Introduction Fp Algorithm Lower Bounds Conclusion

Proof strategy (modified)

R ′i =

{
Ri |Rixi | ≤ λ
0 otherwise

For S ⊆ [n], event 1S indicates that S is exactly the set of
truncated R ′i

E[f (R)] =
∑

S⊆[n]

E [1S · f (R)]

=
∑

S⊆[n]

E

[
1S · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

Problem: How to reason about 1S using k-wise indep.?

Introduction Fp Algorithm Lower Bounds Conclusion

Dealing with 1S

For S ⊆ [n], 1′S indicates that S is a subset of the truncated R ′i

Use inclusion-exclusion!

1S = 1′S ·

(∏
i /∈S

(
1− 1′{i}

))
=

∑
T⊆[n]\S

(−1)|T |1′S∪T

Now

E[f (R)] =
∑

S⊆[n]

∑
T⊆[n]\S

(−1)|T |E

[
1′S∪T · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

Still a problem: How to deal with large S ,T?

Introduction Fp Algorithm Lower Bounds Conclusion

Dealing with 1S

For S ⊆ [n], 1′S indicates that S is a subset of the truncated R ′i
Use inclusion-exclusion!

1S = 1′S ·

(∏
i /∈S

(
1− 1′{i}

))
=

∑
T⊆[n]\S

(−1)|T |1′S∪T

Now

E[f (R)] =
∑

S⊆[n]

∑
T⊆[n]\S

(−1)|T |E

[
1′S∪T · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

Still a problem: How to deal with large S ,T?

Introduction Fp Algorithm Lower Bounds Conclusion

Dealing with 1S

For S ⊆ [n], 1′S indicates that S is a subset of the truncated R ′i
Use inclusion-exclusion!

1S = 1′S ·

(∏
i /∈S

(
1− 1′{i}

))
=

∑
T⊆[n]\S

(−1)|T |1′S∪T

Now

E[f (R)] =
∑

S⊆[n]

∑
T⊆[n]\S

(−1)|T |E

[
1′S∪T · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

Still a problem: How to deal with large S ,T?

Introduction Fp Algorithm Lower Bounds Conclusion

Dealing with 1S

For S ⊆ [n], 1′S indicates that S is a subset of the truncated R ′i
Use inclusion-exclusion!

1S = 1′S ·

(∏
i /∈S

(
1− 1′{i}

))
=

∑
T⊆[n]\S

(−1)|T |1′S∪T

Now

E[f (R)] =
∑

S⊆[n]

∑
T⊆[n]\S

(−1)|T |E

[
1′S∪T · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

Still a problem: How to deal with large S ,T?

Introduction Fp Algorithm Lower Bounds Conclusion

Dealing with 1S

For S ⊆ [n], 1′S indicates that S is a subset of the truncated R ′i
Use inclusion-exclusion!

1S = 1′S ·

(∏
i /∈S

(
1− 1′{i}

))
=

∑
T⊆[n]\S

(−1)|T |1′S∪T

Now

E[f (R)] =
∑

S⊆[n]

∑
T⊆[n]\S

(−1)|T |E

[
1′S∪T · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

Still a problem: How to deal with large S ,T?

Introduction Fp Algorithm Lower Bounds Conclusion

Approximate Inclusion-Exclusion

Introduced to streaming by Bar-Yossef et al. ’02
(analyzed balls and bins with limited independence)

E[f (R)] =
∑

S⊆[n]

∑
T⊆[n]\S

(−1)|T |E

[
1′S∪T · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

?
≈

∑
S⊆[n]
|S |≤Ck

∑
T⊆[n]\S
|T |≤Ck

(−1)|T |E

[
1′S∪T · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

Introduction Fp Algorithm Lower Bounds Conclusion

Approximate Inclusion-Exclusion

Introduced to streaming by Bar-Yossef et al. ’02
(analyzed balls and bins with limited independence)

E[f (R)] =
∑

S⊆[n]

∑
T⊆[n]\S

(−1)|T |E

[
1′S∪T · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

?
≈

∑
S⊆[n]
|S |≤Ck

∑
T⊆[n]\S
|T |≤Ck

(−1)|T |E

[
1′S∪T · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

Introduction Fp Algorithm Lower Bounds Conclusion

Approximate Inclusion-Exclusion

Introduced to streaming by Bar-Yossef et al. ’02
(analyzed balls and bins with limited independence)

E[f (R)] =
∑

S⊆[n]

∑
T⊆[n]\S

(−1)|T |E

[
1′S∪T · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

?
≈

∑
S⊆[n]
|S |≤Ck

∑
T⊆[n]\S
|T |≤Ck

(−1)|T |E

[
1′S∪T · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

Introduction Fp Algorithm Lower Bounds Conclusion

Approximate Inclusion-Exclusion

Introduced to streaming by Bar-Yossef et al. ’02
(analyzed balls and bins with limited independence)

E[f (R)] =
∑

S⊆[n]

∑
T⊆[n]\S

(−1)|T |E

[
1′S∪T · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

≈
∑

S⊆[n]
|S |≤Ck

∑
T⊆[n]\S
|T |≤Ck

(−1)|T |E

[
1′S∪T · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

E[f (R)] ≈ε E[F (~R)] ≈ε

X
S,T⊆[n]
|S|,|T|≤Ck

S∩T=∅

(−1)|T|E Ri
i∈S∪T

241′S∪T · E

24pk,Ri

0@ X
i /∈S∪T

R′i xi

1A3535

=
X

S,T⊆[n]
|S|,|T|≤Ck

S∩T=∅

(−1)|T|E Qi
i∈S∪T

241′S∪T · E

24pk,Qi

0@ X
i /∈S∪T

Q′i xi

1A3535 ≈ε E[F (~Q)] ≈ε E[f (Q)]

Introduction Fp Algorithm Lower Bounds Conclusion

Approximate Inclusion-Exclusion

Introduced to streaming by Bar-Yossef et al. ’02
(analyzed balls and bins with limited independence)

E[f (R)] =
∑

S⊆[n]

∑
T⊆[n]\S

(−1)|T |E

[
1′S∪T · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

≈
∑

S⊆[n]
|S |≤Ck

∑
T⊆[n]\S
|T |≤Ck

(−1)|T |E

[
1′S∪T · f

(∑
i∈S

Rixi +
∑
i /∈S

R ′i xi

)]

E[f (R)] ≈ε E[F (~R)] ≈ε

X
S,T⊆[n]
|S|,|T|≤Ck

S∩T=∅

(−1)|T|E Ri
i∈S∪T

241′S∪T · E

24pk,Ri

0@ X
i /∈S∪T

R′i xi

1A3535

=
X

S,T⊆[n]
|S|,|T|≤Ck

S∩T=∅

(−1)|T|E Qi
i∈S∪T

241′S∪T · E

24pk,Qi

0@ X
i /∈S∪T

Q′i xi

1A3535 ≈ε E[F (~Q)] ≈ε E[f (Q)]

Introduction Fp Algorithm Lower Bounds Conclusion

Proof Outline

• Let Ri be k-wise independent from Dp, and Qi be i.i.d.

• Let R =
∑

i Rixi and Q =
∑

i Qixi .

• Suppose ‖x‖p = 1.

Want: E[I[a,b](Q)] ≈ε E[I[a,b](R)]

Proof: E[I[a,b](Q)] ≈ε E[̃I c
[a,b](Q)] ≈ε E[̃I c

[a,b](R)] ≈ε E[I[a,b](R)]

(1)→(2) Ĩ c well-approximates I except for two length-O(ε) strips. Use
anticoncentration.

(2)→(3) Main technical lemma.

(3)→(4) Same as (1)→(2), but must prove anticoncentration.

Introduction Fp Algorithm Lower Bounds Conclusion

Anticoncentration of R

x
K3 K2 K1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

f (x) = −
∫ x/ε

−∞

sin4(y)

y3
dy

• ‖f (`)‖∞ = O(1/ε)`

⇒ fooled with k = O(1/εp)

• Easy to show E[f (Q)] = O(ε)

• ⇒ E[f (R)] = O(ε) by main technical
lemma

• ⇒ anticoncentration in interval [−ε, ε]

Shift f to show anticoncentration in any width-O(ε) interval.

Introduction Fp Algorithm Lower Bounds Conclusion

Anticoncentration of R

x
K3 K2 K1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

f (x) = −
∫ x/ε

−∞

sin4(y)

y3
dy

• ‖f (`)‖∞ = O(1/ε)`

⇒ fooled with k = O(1/εp)

• Easy to show E[f (Q)] = O(ε)

• ⇒ E[f (R)] = O(ε) by main technical
lemma

• ⇒ anticoncentration in interval [−ε, ε]

Shift f to show anticoncentration in any width-O(ε) interval.

Introduction Fp Algorithm Lower Bounds Conclusion

Anticoncentration of R

x
K3 K2 K1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

f (x) = −
∫ x/ε

−∞

sin4(y)

y3
dy

• ‖f (`)‖∞ = O(1/ε)`

⇒ fooled with k = O(1/εp)

• Easy to show E[f (Q)] = O(ε)

• ⇒ E[f (R)] = O(ε) by main technical
lemma

• ⇒ anticoncentration in interval [−ε, ε]

Shift f to show anticoncentration in any width-O(ε) interval.

Introduction Fp Algorithm Lower Bounds Conclusion

Intuition for the new estimator

Our new estimator’s final step:

“Let y ′median = median{|y ′j |}r
′

j=1.

Output −y ′pmedian · ln
(

1
r

∑r
j=1 cos

(
yj

y ′median

))
.”

• We know y ′median = Θ(‖x‖p).

• Apply main technical lemma with f (x) = cos(x) to refine
y ′median to a (1± ε)-approximation.

Introduction Fp Algorithm Lower Bounds Conclusion

Intuition for the new estimator

Our new estimator’s final step:

“Let y ′median = median{|y ′j |}r
′

j=1.

Output −y ′pmedian · ln
(

1
r

∑r
j=1 cos

(
yj

y ′median

))
.”

• We know y ′median = Θ(‖x‖p).

• Apply main technical lemma with f (x) = cos(x) to refine
y ′median to a (1± ε)-approximation.

Introduction Fp Algorithm Lower Bounds Conclusion

Correcting to (1± ε)-approximation

Z ∼ Dp

E[cos(BZ)] = E

[
e iBZ + e−iBZ

2

]
Can look at Fourier transform of pdf of Dp to show
E[cos(BZ)] = e−|B|

p

• Apply technical lemma to f
(

yj

y ′median

)
with f (x) = cos(x)

• Use Chebyshev’s inequality

Introduction Fp Algorithm Lower Bounds Conclusion

Correcting to (1± ε)-approximation

Z ∼ Dp

E[cos(BZ)] = E

[
e iBZ + e−iBZ

2

]
Can look at Fourier transform of pdf of Dp to show
E[cos(BZ)] = e−|B|

p

• Apply technical lemma to f
(

yj

y ′median

)
with f (x) = cos(x)

• Use Chebyshev’s inequality

Introduction Fp Algorithm Lower Bounds Conclusion

Lower bounds
Streaming lower bounds via communication complexity

Alice Bob

x ∈ X y ∈ Y

• Alice, Bob know f : X × Y → {0, 1}
• Bob needs to compute f (x , y)

• Communication lower bounds ⇒ streaming space lower
bounds (Alon, Matias, Szegedy ’99)

Introduction Fp Algorithm Lower Bounds Conclusion

Previous Fp lower bound

Woodruff ’04 and Jayram, Kumar, Sivakumar ’08

Indexing

• X = {0, 1}t , Y = {1, . . . , t}
• f (x , y) = xy

Gap-Hamming

• X = {0, 1}t′ , Y = {0, 1}t′

•

f (x , y) =

{
1 ∆(x , y) ≥ t′

2 +
√

t ′

0 ∆(x , y) ≤ t′

2 −
√

t ′

Indexing
JKS′08−−−−→ Gap-Hamming

Woodruff′04−−−−−−→ Fp

Led to Ω(min{N, ε−2}) lower bound for Fp

Introduction Fp Algorithm Lower Bounds Conclusion

Previous Fp lower bound

Woodruff ’04 and Jayram, Kumar, Sivakumar ’08

Indexing

• X = {0, 1}t , Y = {1, . . . , t}
• f (x , y) = xy

Gap-Hamming

• X = {0, 1}t′ , Y = {0, 1}t′

•

f (x , y) =

{
1 ∆(x , y) ≥ t′

2 +
√

t ′

0 ∆(x , y) ≤ t′

2 −
√

t ′

Indexing
JKS′08−−−−→ Gap-Hamming

Woodruff′04−−−−−−→ Fp

Led to Ω(min{N, ε−2}) lower bound for Fp

Introduction Fp Algorithm Lower Bounds Conclusion

Previous Fp lower bound

Woodruff ’04 and Jayram, Kumar, Sivakumar ’08

Indexing

• X = {0, 1}t , Y = {1, . . . , t}
• f (x , y) = xy

Gap-Hamming

• X = {0, 1}t′ , Y = {0, 1}t′

•

f (x , y) =

{
1 ∆(x , y) ≥ t′

2 +
√

t ′

0 ∆(x , y) ≤ t′

2 −
√

t ′

Indexing
JKS′08−−−−→ Gap-Hamming

Woodruff′04−−−−−−→ Fp

Led to Ω(min{N, ε−2}) lower bound for Fp

Introduction Fp Algorithm Lower Bounds Conclusion

The new Fp lower bound

Augmented-Indexing

• X = {0, 1}t , Y = {1, . . . , t}
• Bob also gets xi for i > y

• f (x , y) = xy

Requires Ω(t) communication (MNSW ’98)

Introduction Fp Algorithm Lower Bounds Conclusion

An F1 lower bound

Theorem
(1± ε)-approximation of F1 requires Ω(min{N, ε−2 log M}) space

Proof.

1/ε2 coordinates

t = min{ε2N , log M} blocks

Alice:

Introduction Fp Algorithm Lower Bounds Conclusion

An F1 lower bound

Theorem
(1± ε)-approximation of F1 requires Ω(min{N, ε−2 log M}) space

Proof.

1/ε2 coordinates

t = min{ε2N , log M} blocks

Alice:

Bob: y

Introduction Fp Algorithm Lower Bounds Conclusion

An F1 lower bound

Step 1:

1/ε2 coordinates

t = min{ε2N , log M} blocks

Alice:

Bob: y

Step 2:

Gap-Ham
JKS ’08

Indexing

Θ(1/ε2)

Gap-Ham
JKS ’08

Indexing

Θ(1/ε2)

Gap-Ham
JKS ’08

Θ(1/ε2)

Gap-Ham
JKS ’08

Indexing

Θ(1/ε2)

Bob:Alice:

...

y

Introduction Fp Algorithm Lower Bounds Conclusion

An F1 lower bound

Step 1:

1/ε2 coordinates

t = min{ε2N , log M} blocks

Alice:

Bob: y

Step 2:
Gap-Ham

JKS ’08
Indexing

Θ(1/ε2)

Gap-Ham
JKS ’08

Indexing

Θ(1/ε2)

Gap-Ham
JKS ’08

Θ(1/ε2)

Gap-Ham
JKS ’08

Indexing

Θ(1/ε2)

Bob:Alice:

...

y

Step 3: For ith Gap-Ham vector zi , if zi ,j = 1 Alice puts ((i , j), 2i)
in stream

Step 4: Alice sends algorithm state + weight of each block

Step 5: Bob deletes contribution of blocks larger than his own

Introduction Fp Algorithm Lower Bounds Conclusion

An F1 lower bound

Step 1:

1/ε2 coordinates

t = min{ε2N , log M} blocks

Alice:

Bob: y

Step 2:
Gap-Ham

JKS ’08
Indexing

Θ(1/ε2)

Gap-Ham
JKS ’08

Indexing

Θ(1/ε2)

Gap-Ham
JKS ’08

Θ(1/ε2)

Gap-Ham
JKS ’08

Indexing

Θ(1/ε2)

Bob:Alice:

...

y

Step 3: For ith Gap-Ham vector zi , if zi ,j = 1 Alice puts ((i , j), 2i)
in stream

Step 4: Alice sends algorithm state + weight of each block

Step 5: Bob deletes contribution of blocks larger than his own

Introduction Fp Algorithm Lower Bounds Conclusion

An F1 lower bound

Step 1:

1/ε2 coordinates

t = min{ε2N , log M} blocks

Alice:

Bob: y

Step 2:
Gap-Ham

JKS ’08
Indexing

Θ(1/ε2)

Gap-Ham
JKS ’08

Indexing

Θ(1/ε2)

Gap-Ham
JKS ’08

Θ(1/ε2)

Gap-Ham
JKS ’08

Indexing

Θ(1/ε2)

Bob:Alice:

...

y

Step 3: For ith Gap-Ham vector zi , if zi ,j = 1 Alice puts ((i , j), 2i)
in stream

Step 4: Alice sends algorithm state + weight of each block

Step 5: Bob deletes contribution of blocks larger than his own

Introduction Fp Algorithm Lower Bounds Conclusion

Open problems

• Fp in optimal space with O(1) update time?

• Find other applications for FT-mollification.

Introduction Fp Algorithm Lower Bounds Conclusion

Open problems (some progress)

• Fp in optimal space with O(1) update time?

[N., Woodruff] p = 1 with ε−2 logO(1)(nmM) space,
logO(1)(nmM) update time

• Find other applications for FT-mollification.

[Kane, N., Woodruff] FT-mollification actually gives an
alternative proof that bounded independence fools regular
halfspaces ([DGJ+09]).

[Diakonikolas, Kane, N.] Showed bounded independence fools
degree-2 threshold functions, via FT-mollification.

Introduction Fp Algorithm Lower Bounds Conclusion

Other news announcements

[Kane, N., Woodruff]: Optimal distinct elements algorithm.

• O(ε−2 + log(n)) bits of space

• O(1) worst-case update and reporting times

Introduction Fp Algorithm Lower Bounds Conclusion

Fooling regular halfspaces

• Ha,θ = {x : 〈a, x〉 ≥ θ} (a halfspace).

• Theorem [DGJ+09]: Pr[x ∈ Ha,θ] ≈ε Pr[y ∈ Ha,θ] for
k = Õ(1/ε2). xi are i.i.d., yi are k-wise independent.

• The [DGJ+09] proof outline:

1. Reduce to case when |ai | ≤ ε for all i
2. Show the theorem in the case when every |ai | ≤ ε (the

“regular” case)

• Proof of 2 via FT-mollification:
E[I[θ,∞)(〈a, x〉)] ≈ε E[̃I c

[θ,∞)(〈a, x〉)] ≈ε E[̃I c
[θ,∞)(〈a, y〉)] ≈ε

E[I[θ,∞)(〈a, y〉)].

Introduction Fp Algorithm Lower Bounds Conclusion

Fooling regular halfspaces

• Ha,θ = {x : 〈a, x〉 ≥ θ} (a halfspace).

• Theorem [DGJ+09]: Pr[x ∈ Ha,θ] ≈ε Pr[y ∈ Ha,θ] for
k = Õ(1/ε2). xi are i.i.d., yi are k-wise independent.

• The [DGJ+09] proof outline:

1. Reduce to case when |ai | ≤ ε for all i
2. Show the theorem in the case when every |ai | ≤ ε (the

“regular” case)

• Proof of 2 via FT-mollification:
E[I[θ,∞)(〈a, x〉)] ≈ε E[̃I c

[θ,∞)(〈a, x〉)] ≈ε E[̃I c
[θ,∞)(〈a, y〉)] ≈ε

E[I[θ,∞)(〈a, y〉)].

Introduction Fp Algorithm Lower Bounds Conclusion

Fooling degree-2 threshold functions
Statement: E[sign(p(x))] ≈ε E[sign(p(y))] for k = poly(1/ε), p a
degree-2 polynomial.

• Some savings in the known applications: (1) Ω(1/εp)-wise
independence fools Indyk’s estimator, (2) Ω(1/ε2)-wise
independence ε-fools regular halfspaces (no more logs).

• A new statement: Bounded independence fools
Goemans-Williamson hyperplane rounding.

• Idea of proof:

1. p = p1 − p2 + p3 + p4 + C , p1, p2 pos. semidef. with no small
non-zero eigenvalues, p3 indefinite with only small eigenvalues,
p4 a linear form, C a constant.

2. Let ∆ be the trace of the symmetric matrix associated with p3.
3. Define R ⊆ R4 by R = {z : z2

1 − z2
2 + z3 + z4 + ∆ + C > 0}.

4. E[IR(M(x))] ≈ε E[̃I c
R(M(x))] ≈ε E[̃I c

R(M(y))] ≈ε E[IR(M(y))]

for M(z) = (
√

p1(z),
√

p2(z), p3(z)−∆, p4(z)).

Introduction Fp Algorithm Lower Bounds Conclusion

Fooling degree-2 threshold functions
Statement: E[sign(p(x))] ≈ε E[sign(p(y))] for k = poly(1/ε), p a
degree-2 polynomial.

• Some savings in the known applications: (1) Ω(1/εp)-wise
independence fools Indyk’s estimator, (2) Ω(1/ε2)-wise
independence ε-fools regular halfspaces (no more logs).

• A new statement: Bounded independence fools
Goemans-Williamson hyperplane rounding.

• Idea of proof:

1. p = p1 − p2 + p3 + p4 + C , p1, p2 pos. semidef. with no small
non-zero eigenvalues, p3 indefinite with only small eigenvalues,
p4 a linear form, C a constant.

2. Let ∆ be the trace of the symmetric matrix associated with p3.
3. Define R ⊆ R4 by R = {z : z2

1 − z2
2 + z3 + z4 + ∆ + C > 0}.

4. E[IR(M(x))] ≈ε E[̃I c
R(M(x))] ≈ε E[̃I c

R(M(y))] ≈ε E[IR(M(y))]

for M(z) = (
√

p1(z),
√

p2(z), p3(z)−∆, p4(z)).

Introduction Fp Algorithm Lower Bounds Conclusion

Fooling degree-2 threshold functions
Statement: E[sign(p(x))] ≈ε E[sign(p(y))] for k = poly(1/ε), p a
degree-2 polynomial.

• Some savings in the known applications: (1) Ω(1/εp)-wise
independence fools Indyk’s estimator, (2) Ω(1/ε2)-wise
independence ε-fools regular halfspaces (no more logs).

• A new statement: Bounded independence fools
Goemans-Williamson hyperplane rounding.

• Idea of proof:

1. p = p1 − p2 + p3 + p4 + C , p1, p2 pos. semidef. with no small
non-zero eigenvalues, p3 indefinite with only small eigenvalues,
p4 a linear form, C a constant.

2. Let ∆ be the trace of the symmetric matrix associated with p3.
3. Define R ⊆ R4 by R = {z : z2

1 − z2
2 + z3 + z4 + ∆ + C > 0}.

4. E[IR(M(x))] ≈ε E[̃I c
R(M(x))] ≈ε E[̃I c

R(M(y))] ≈ε E[IR(M(y))]

for M(z) = (
√

p1(z),
√

p2(z), p3(z)−∆, p4(z)).

	Introduction
	Fp Algorithm
	Lower Bounds
	Conclusion

