▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A Space Optimal Streaming Algorithm for Sketching Small Moments

Daniel M. Kane **Jelani Nelson** David P. Woodruff Harvard MIT IBM Almaden

December 18, 2009

Streaming moments: problem formulation

Model

- $x = (x_1, x_2, \dots, x_n)$ starts off as $\vec{0}$
- *m* updates $(i_1, v_1), (i_2, v_2), \dots, (i_m, v_m)$
- Update (i, v) causes change $x_i \leftarrow x_i + v$

•
$$v \in \{-M, \ldots, M\}$$

Streaming moments: problem formulation

Model

- $x = (x_1, x_2, \dots, x_n)$ starts off as $\vec{0}$
- m updates $(i_1, v_1), (i_2, v_2), \dots, (i_m, v_m)$
- Update (i, v) causes change $x_i \leftarrow x_i + v$

•
$$v \in \{-M, \ldots, M\}$$

Goal: Output
$$F_p \stackrel{\text{def}}{=} \sum_{i=1}^n |x_i|^p = ||x||_p^p$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Streaming moments: objectives

Objectives

- Minimize space usage
- Minimize update time

Trivial solutions

- Keep x in memory: $O(n \log(mM))$ space / O(1) time
- Keep stream in memory: $O(m \log(nM))$ space / O(1) time

Goal: Get polylogarithmic dependence on n, m

Streaming moments: bad news

Alon, Matias, Szegedy '99: No sublinear space algorithms without

- Approximation (allow output to be $(1 \pm \varepsilon)F_p$)
- Randomization (allow 1% failure probability)

New goal: Output $(1 \pm \varepsilon)F_p$ with probability 99%

Streaming moments: bad news

Alon, Matias, Szegedy '99: No sublinear space algorithms without

- Approximation (allow output to be $(1 \pm \varepsilon)F_p$)
- Randomization (allow 1% failure probability)

New goal: Output $(1 \pm \varepsilon)F_p$ with probability 99%

More bad news: Polynomial space required for p > 2 ([BJKS '02] and [CKS '03])

Streaming moments: bad news

Alon, Matias, Szegedy '99: No sublinear space algorithms without

- Approximation (allow output to be $(1 \pm \varepsilon)F_p$)
- Randomization (allow 1% failure probability)

New goal: Output $(1 \pm \varepsilon)F_p$ with probability 99%

More bad news: Polynomial space required for p > 2 ([BJKS '02] and [CKS '03])

Newer goal: Output $(1 \pm \varepsilon)F_p$ with probability 99% for $0 \le p \le 2$

Lower Bounds

Conclusion

Contributions (0

(Notation: $N = \min\{n, m\}$)

Ref	Upper bound	Lower bound	Update time
AM5'99	$O(e^{-2}\log(mM))$ (n-2)	$\Omega(\log N)$	O(1)(*)
AIND 33	0(c log(mm)) (p=2)	32(10g /V)	0(1)()
FKSV'99 (**)	$O(\varepsilon^{-2} \log(mM))$ (p=1)		$O\left(\frac{\log(NM)}{\varepsilon^2}\right)$
Indyk'06, Li'08	$O(\varepsilon^{-2}\log(mM)\log N)$		$O(\varepsilon^{-2})$
GC'07	$O(\varepsilon^{-(2+p)}\log^2(N)\log(mM))$		polylog(mM)
Woodruff'04		$\Omega(\varepsilon^{-2})$	
This work	$O(\varepsilon^{-2}\log(mM))$	$\Omega(\varepsilon^{-2}\log(mM))$	$\tilde{O}(\varepsilon^{-2})$

(*) achieved by CCF'02, TZ'04, (**) L_1 -difference only

Lower Bounds

Conclusion

 F_p (0 p-stable distributions

Definition (Zolotarev '86)

For $0 , there exists a probability distribution <math>\mathcal{D}_p$ called the *p*-stable distribution such that if $Q_1, \ldots, Q_n \sim \mathcal{D}_p$ are independent, then $\sum_{i=1}^n Q_i x_i \sim ||x||_p \mathcal{D}_p$.

(In short: \mathcal{D}_p carries information about L_p norms)

Lower Bounds

Conclusion

 F_p (0 p-stable distributions

Definition (Zolotarev '86)

For $0 , there exists a probability distribution <math>\mathcal{D}_p$ called the *p*-stable distribution such that if $Q_1, \ldots, Q_n \sim \mathcal{D}_p$ are independent, then $\sum_{i=1}^n Q_i x_i \sim ||x||_p \mathcal{D}_p$.

(In short: \mathcal{D}_p carries information about L_p norms)

- p = 2: Gaussian
- **p** = 1: Cauchy
- *p* = 1/2: Lévy

Algorithms based on *p*-stable sketch matrices

$$A = \begin{bmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{r,1} & \cdots & A_{r,n} \end{bmatrix}, \text{ the } A_{i,j} \text{ are i.i.d. from } \mathcal{D}_p,$$

Maintain Ax = y

Algorithms based on *p*-stable sketch matrices

$$A = \begin{bmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{r,1} & \cdots & A_{r,n} \end{bmatrix}, \text{ the } A_{i,j} \text{ are i.i.d. from } \mathcal{D}_{\rho},$$

Maintain Ax = y

- Idea introduced by Indyk '06
- Indyk '06: Estimate F_p as $median\{|y_j|^p\}_{j=1}^r$
- Li '08: Estimate F_p as $\frac{\prod_{j=1}^r |y_j|^{p/r}}{\left[\frac{2}{\pi}\Gamma\left(\frac{p}{r}\right)\Gamma\left(1-\frac{1}{r}\right)\sin\left(\frac{\pi}{2}\cdot\frac{p}{r}\right)\right]^r}$
- Both cases: r = Θ(1/ε²)

Introduction

F_p Algorithm

Lower Bounds

Conclusion

(ロ)、(型)、(E)、(E)、 E) の(の)

Too much randomness

• In Indyk'06 and Li'08, $\Omega(n/\varepsilon^2)$ bits needed to store matrix A

Lower Bounds

Conclusion

Too much randomness

- In Indyk'06 and Li'08, $\Omega(n/\varepsilon^2)$ bits needed to store matrix A
- Indyk derandomized using Nisan's pseudorandom generator (but blowed up space)

Lower Bounds

Conclusion

Too much randomness

- In Indyk'06 and Li'08, $\Omega(n/\varepsilon^2)$ bits needed to store matrix A
- Indyk derandomized using Nisan's pseudorandom generator (but blowed up space)

Is there a more efficient derandomization?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Our Contributions

Yes, via *k*-wise independence!

- For fixed *i*, make the A_{*i*,*j*} *k*-wise independent
- Make the seeds used to generate rows of A pairwise independent

Lower Bounds

Conclusion

Our Contributions

Yes, via *k*-wise independence!

- For fixed *i*, make the A_{*i*,*j*} *k*-wise independent
- Make the seeds used to generate rows of A pairwise independent

- $k = ilde{\Theta}(1/arepsilon^p)$ fools Indyk's estimator
- A different estimator works with $k = \Theta(\log(1/\varepsilon)/\log\log(1/\varepsilon)).$

Lower Bounds

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Our Contributions

A different estimator (works with $k = O(\log(1/\varepsilon)/\log\log(1/\varepsilon)))$

1. Maintain
$$Ax = y$$
 and $A'x = y'$.
2. A has $k = \Theta(\log(1/\varepsilon)/\log\log(1/\varepsilon))$, $r = \Theta(1/\varepsilon^2)$.
3. A' has $k', r' = \Theta(1)$.
4. $y'_{med} \leftarrow median\{|y'_j|\}_{j=1}^{r'}$.
5. Output $-y'_{med}^{\prime p} \cdot \ln\left(\frac{1}{r}\sum_{j=1}^{r}\cos\left(\frac{y_j}{y'_{med}}\right)\right)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Analyzing median F_p algorithm (full independence)

An argument for the median:

Define

$$I_{[a,b]}(x) = egin{cases} 1, & ext{if } x \in [a,b], \ 0, & ext{otherwise} \end{cases}$$

• $Q = \sum_i Q_i x_i$.

Analyzing median F_p algorithm (full independence)

An argument for the median:

Define

$$\mathit{I}_{[a,b]}(x) = egin{cases} 1, & ext{if } x \in [a,b], \ 0, & ext{otherwise} \end{cases}$$

•
$$Q = \sum_i Q_i x_i$$
.

• "median $(|Q|/||x||_p) = 1$ " means $\mathsf{E}[I_{[-1,1]}(Q/||x||_p)] = 1/2$.

Analyzing median F_p algorithm (full independence)

An argument for the median:

Define

$$\mathit{I}_{[a,b]}(x) = egin{cases} 1, & ext{if } x \in [a,b], \ 0, & ext{otherwise} \end{cases}$$

•
$$Q = \sum_i Q_i x_i$$
.

• "median($|Q|/||x||_p$) = 1" means $\mathsf{E}[I_{[-1,1]}(Q/||x||_p)] = 1/2$.

- $\mathbf{E}[I_{[-1+\varepsilon,1-\varepsilon]}(Q/||x||_p)] = 1/2 \Theta(\varepsilon)$
- $\mathbf{E}[I_{[-1-\varepsilon,1+\varepsilon]}(Q/||x||_p)] = 1/2 + \Theta(\varepsilon)$
- Take r = Θ(1/ε²) trials Q₁,..., Q_r. Number of counters inside interval is concentrated by Chebyshev.

 \Rightarrow median of the $|Q_j|$ is $(1 \pm \Theta(\varepsilon)) ||x||_p$ with probability 2/3

Analyzing median F_p algorithm (*k*-wise independence)

One possible path

- Replace *I*_[*a,b*] with a well-approximating low-degree polynomial.
- k-wise independence fools polynomials.

Analyzing median F_p algorithm (*k*-wise independence)

One possible path

- Replace *I*_[*a,b*] with a well-approximating low-degree polynomial.
- *k*-wise independence fools polynomials.

What we actually do (for good reason)

- Replace $I_{[a,b]}$ with a well-approximating smooth function $\tilde{I}_{[a,b]}$.
- Show $\tilde{l}_{[a,b]}$ is fooled by *k*-wise independence via Taylor's theorem.

Lower Bounds

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Defining $\tilde{I}_{[a,b]}$ FT-mollification

Define

$$b(x) = egin{cases} e^{-rac{x^2}{1-x^2}} & ext{for } |x| < 1 \ 0 & ext{otherwise} \end{cases}$$

and

$$\tilde{l}^c_{[a,b]}(x) = \frac{1}{2\pi} (c \cdot \hat{b}(ct) * l_{[a,b]}(t))(x)$$

Lower Bounds

Conclusion

Defining $\tilde{I}_{[a,b]}$ FT-mollification

Define

$$b(x) = egin{cases} e^{-rac{x^2}{1-x^2}} & ext{for } |x| < 1 \ 0 & ext{otherwise} \end{cases}$$

and

$$\tilde{l}^{c}_{[a,b]}(x) = \frac{1}{2\pi} (c \cdot \hat{b}(ct) * l_{[a,b]}(t))(x)$$

Then, for c > 1,

i.
$$\|(\widetilde{l}^c_{[a,b]})^{(\ell)}\|_{\infty} = O(c^{\ell})$$
 for $\ell \geq 0$.

ii. For $c = \tilde{O}(1/\varepsilon)$, $|\tilde{I}_{[a,b]}^c - I_{[a,b]}| < \varepsilon$ except potentially at $a \pm \varepsilon$ and $b \pm \varepsilon$.

Lower Bounds

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Defining $\tilde{I}_{[a,b]}$ FT-mollification

Define

$$b(x) = egin{cases} e^{-rac{x^2}{1-x^2}} & ext{for } |x| < 1 \ 0 & ext{otherwise} \end{cases}$$

and

$$\tilde{l}^{c}_{[a,b]}(x) = rac{1}{2\pi} (c \cdot \hat{b}(ct) * l_{[a,b]}(t))(x)$$

Then, for c > 1,

i.
$$\|(\tilde{l}_{[a,b]}^c)^{(\ell)}\|_{\infty} = O(c^{\ell})$$
 for $\ell \ge 0$.
ii. For $c = \tilde{O}(1/\varepsilon)$, $|\tilde{l}_{[a,b]}^c - l_{[a,b]}| < \varepsilon$ except potentially at $a \pm \varepsilon$
and $b \pm \varepsilon$.
For c large, $\tilde{l}_{[a,b]}^c$ looks like $l_{[a,b]}$.

Introduction

F_p Algorithm

Lower Bounds

Conclusion

 $\tilde{\textit{I}}_{[-1,1]}^{c}$ plots

-2

590

æ

Proof Outline

- Let R_i be k-wise independent from \mathcal{D}_p , and Q_i be i.i.d.
- Let $R = \sum_{i} R_{i} x_{i}$ and $Q = \sum_{i} Q_{i} x_{i}$.
- Suppose $||x||_p = 1$.

Proof Outline

- Let R_i be k-wise independent from \mathcal{D}_p , and Q_i be i.i.d.
- Let $R = \sum_{i} R_{i} x_{i}$ and $Q = \sum_{i} Q_{i} x_{i}$.
- Suppose $||x||_p = 1$.

Want: $\mathbf{E}[I_{[a,b]}(Q)] \approx_{\varepsilon} \mathbf{E}[I_{[a,b]}(R)]$

Proof Outline

- Let R_i be k-wise independent from \mathcal{D}_p , and Q_i be i.i.d.
- Let $R = \sum_{i} R_{i} x_{i}$ and $Q = \sum_{i} Q_{i} x_{i}$.
- Suppose $||x||_p = 1$.
- Want: $\mathbf{E}[I_{[a,b]}(Q)] \approx_{\varepsilon} \mathbf{E}[I_{[a,b]}(R)]$

Proof: $\mathbf{E}[I_{[a,b]}(Q)] \approx_{\varepsilon} \mathbf{E}[\tilde{I}^{c}_{[a,b]}(Q)] \approx_{\varepsilon} \mathbf{E}[\tilde{I}^{c}_{[a,b]}(R)] \approx_{\varepsilon} \mathbf{E}[I_{[a,b]}(R)]$

- (1) \rightarrow (2) \tilde{I}^c well-approximates I except for two length- $O(\varepsilon)$ strips. Use anticoncentration.
- $(2) \rightarrow (3)$ Main technical lemma.
- $(3) \rightarrow (4)$ Same as $(1) \rightarrow (2)$, but must prove anticoncentration.

Lower Bounds

Conclusion

Main technical lemma

Lemma

- $\|f^{(\ell)}(x)\|_{\infty} = O(lpha^\ell)$ for all $\ell \geq 0$
- $k = \max\{\log(1/\varepsilon), \alpha^p\}$
- R_i are $\Theta(k)$ -wise indep., Q_i are fully indep., from \mathcal{D}_p

•
$$R = \sum_i R_i x_i, Q = \sum_i Q_i x_i$$

• $\|x\|_p = O(1)$

 $\Rightarrow |\mathbf{E}[f(R)] - \mathbf{E}[f(Q)]| < \varepsilon$

 F_p Algorithm

Lower Bounds

Conclusion

Proof strategy

 Approximate f by a polynomial (Taylor-expand), and bound expected difference using Taylor's theorem, by analyzing moments E[X_i^k] and high-order derivatives of f F_p Algorithm

Lower Bounds

Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof strategy

- Approximate f by a polynomial (Taylor-expand), and bound expected difference using Taylor's theorem, by analyzing moments E[X_i^k] and high-order derivatives of f
- Problem: \mathcal{D}_p has infinite moments for p < 2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof strategy (modified)

Linearity of expectation:

$$\mathbf{E}[f(R)] = \mathbf{E}\left[\sum_{A \in \mathcal{A}} \mathbf{1}_A \cdot f(R)\right] = \sum_{A \in \mathcal{A}} \mathbf{E}[\mathbf{1}_A \cdot f(R)]$$

where events in \mathcal{A} partition probability space

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof strategy (modified)

Linearity of expectation:

$$\mathbf{E}[f(R)] = \mathbf{E}\left[\sum_{A \in \mathcal{A}} \mathbf{1}_A \cdot f(R)\right] = \sum_{A \in \mathcal{A}} \mathbf{E}[\mathbf{1}_A \cdot f(R)]$$

where events in ${\mathcal A}$ partition probability space

What events should we consider?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof strategy (modified)

Linearity of expectation:

$$\mathbf{E}[f(R)] = \mathbf{E}\left[\sum_{A \in \mathcal{A}} \mathbf{1}_A \cdot f(R)\right] = \sum_{A \in \mathcal{A}} \mathbf{E}[\mathbf{1}_A \cdot f(R)]$$

where events in ${\mathcal A}$ partition probability space

What events should we consider? Truncation
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof strategy (modified)

Linearity of expectation:

$$\mathbf{E}[f(R)] = \mathbf{E}\left[\sum_{A \in \mathcal{A}} \mathbf{1}_A \cdot f(R)\right] = \sum_{A \in \mathcal{A}} \mathbf{E}[\mathbf{1}_A \cdot f(R)]$$

where events in $\mathcal A$ partition probability space

What events should we consider? Truncation

Define random variables:

$$R'_i = egin{cases} R_i, & |R_i x_i| \leq \lambda \ 0, & ext{otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof strategy (modified)

$$R'_i = egin{cases} R_i & |R_i x_i| \leq \lambda \ 0 & ext{otherwise} \end{cases}$$

For $S \subseteq [n]$, event $\mathbf{1}_S$ indicates that S is *exactly* the set of truncated R'_i

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof strategy (modified)

$$R_i' = egin{cases} R_i & |R_i x_i| \leq \lambda \ 0 & ext{otherwise} \end{cases}$$

For $S \subseteq [n]$, event $\mathbf{1}_S$ indicates that S is *exactly* the set of truncated R'_i

$$\mathbf{E}[f(R)] = \sum_{S \subseteq [n]} \mathbf{E} \left[\mathbf{1}_{S} \cdot f(R) \right]$$
$$= \sum_{S \subseteq [n]} \mathbf{E} \left[\mathbf{1}_{S} \cdot f\left(\sum_{i \in S} R_{i} x_{i} + \sum_{i \notin S} R'_{i} x_{i} \right) \right]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof strategy (modified)

$$R_i' = egin{cases} R_i & |R_i x_i| \leq \lambda \ 0 & ext{otherwise} \end{cases}$$

For $S \subseteq [n]$, event $\mathbf{1}_S$ indicates that S is *exactly* the set of truncated R'_i

$$\mathbf{E}[f(R)] = \sum_{S \subseteq [n]} \mathbf{E} \left[\mathbf{1}_{S} \cdot f(R) \right]$$
$$= \sum_{S \subseteq [n]} \mathbf{E} \left[\mathbf{1}_{S} \cdot f\left(\sum_{i \in S} R_{i} x_{i} + \sum_{i \notin S} R'_{i} x_{i} \right) \right]$$

Problem: How to reason about $\mathbf{1}_S$ using k-wise indep.?

Dealing with $\mathbf{1}_S$

For $S \subseteq [n]$, $\mathbf{1}'_S$ indicates that S is a *subset* of the truncated R'_i

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dealing with $\mathbf{1}_S$

For $S \subseteq [n]$, $\mathbf{1}'_S$ indicates that S is a *subset* of the truncated R'_i Use inclusion-exclusion!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dealing with $\mathbf{1}_S$

For $S \subseteq [n]$, $\mathbf{1}'_S$ indicates that S is a *subset* of the truncated R'_i Use inclusion-exclusion!

$$\mathbf{1}_{S} = \mathbf{1}'_{S} \cdot \left(\prod_{i \notin S} \left(1 - \mathbf{1}'_{\{i\}} \right) \right)$$
$$= \sum_{T \subseteq [n] \setminus S} (-1)^{|T|} \mathbf{1}'_{S \cup T}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dealing with $\mathbf{1}_S$

For $S \subseteq [n]$, $\mathbf{1}'_S$ indicates that S is a *subset* of the truncated R'_i Use inclusion-exclusion!

$$\mathbf{1}_{S} = \mathbf{1}'_{S} \cdot \left(\prod_{i \notin S} \left(1 - \mathbf{1}'_{\{i\}} \right) \right)$$
$$= \sum_{T \subseteq [n] \setminus S} (-1)^{|T|} \mathbf{1}'_{S \cup T}$$

Now

$$\mathbf{E}[f(R)] = \sum_{S \subseteq [n]} \sum_{T \subseteq [n] \setminus S} (-1)^{|T|} \mathbf{E} \left[\mathbf{1}_{S \cup T}' \cdot f\left(\sum_{i \in S} R_i x_i + \sum_{i \notin S} R_i' x_i \right) \right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dealing with $\mathbf{1}_S$

For $S \subseteq [n]$, $\mathbf{1}'_S$ indicates that S is a *subset* of the truncated R'_i Use inclusion-exclusion!

$$\mathbf{1}_{S} = \mathbf{1}'_{S} \cdot \left(\prod_{i \notin S} \left(1 - \mathbf{1}'_{\{i\}} \right) \right)$$
$$= \sum_{T \subseteq [n] \setminus S} (-1)^{|T|} \mathbf{1}'_{S \cup T}$$

Now

$$\mathbf{E}[f(R)] = \sum_{S \subseteq [n]} \sum_{T \subseteq [n] \setminus S} (-1)^{|T|} \mathbf{E} \left[\mathbf{1}_{S \cup T}' \cdot f \left(\sum_{i \in S} R_i x_i + \sum_{i \notin S} R_i' x_i \right) \right]$$

Still a problem: How to deal with large S, T?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Approximate Inclusion-Exclusion

Introduced to streaming by Bar-Yossef et al. '02 (analyzed balls and bins with limited independence)

Lower Bounds

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Approximate Inclusion-Exclusion

Introduced to streaming by Bar-Yossef et al. '02 (analyzed balls and bins with limited independence)

$$\mathbf{E}[f(R)] = \sum_{S \subseteq [n]} \sum_{T \subseteq [n] \setminus S} (-1)^{|T|} \mathbf{E} \left[\mathbf{1}_{S \cup T}' \cdot f \left(\sum_{i \in S} R_i x_i + \sum_{i \notin S} R_i' x_i \right) \right]$$

Lower Bounds

Conclusion

Approximate Inclusion-Exclusion

Introduced to streaming by Bar-Yossef et al. '02 (analyzed balls and bins with limited independence)

$$\mathbf{E}[f(R)] = \sum_{S \subseteq [n]} \sum_{T \subseteq [n] \setminus S} (-1)^{|T|} \mathbf{E} \left[\mathbf{1}_{S \cup T}' \cdot f\left(\sum_{i \in S} R_i x_i + \sum_{i \notin S} R_i' x_i \right) \right] \\ \stackrel{?}{\approx} \sum_{\substack{S \subseteq [n] \\ |S| \leq Ck}} \sum_{\substack{T \subseteq [n] \setminus S \\ |T| \leq Ck}} (-1)^{|T|} \mathbf{E} \left[\mathbf{1}_{S \cup T}' \cdot f\left(\sum_{i \in S} R_i x_i + \sum_{i \notin S} R_i' x_i \right) \right]$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Approximate Inclusion-Exclusion

Introduced to streaming by Bar-Yossef et al. '02 (analyzed balls and bins with limited independence)

$$\mathbf{E}[f(R)] = \sum_{S \subseteq [n]} \sum_{T \subseteq [n] \setminus S} (-1)^{|T|} \mathbf{E} \left[\mathbf{1}_{S \cup T}' \cdot f\left(\sum_{i \in S} R_i x_i + \sum_{i \notin S} R_i' x_i \right) \right]$$

$$\approx \sum_{\substack{S \subseteq [n] \\ |S| \le Ck}} \sum_{\substack{T \subseteq [n] \setminus S \\ |T| \le Ck}} (-1)^{|T|} \mathbf{E} \left[\mathbf{1}_{S \cup T}' \cdot f\left(\sum_{i \in S} R_i x_i + \sum_{i \notin S} R_i' x_i \right) \right]$$

Approximate Inclusion-Exclusion

Introduced to streaming by Bar-Yossef et al. '02 (analyzed balls and bins with limited independence)

$$\begin{split} \mathbf{E}[f(R)] &= \sum_{S \subseteq [n]} \sum_{T \subseteq [n] \setminus S} (-1)^{|T|} \mathbf{E} \left[\mathbf{1}_{S \cup T}' \cdot f\left(\sum_{i \in S} R_i x_i + \sum_{i \notin S} R_i' x_i \right) \right] \\ &\approx \sum_{\substack{S \subseteq [n] \\ |S| \leq Ck}} \sum_{\substack{T \subseteq [n] \setminus S \\ |T| \leq Ck}} (-1)^{|T|} \mathbf{E} \left[\mathbf{1}_{S \cup T}' \cdot f\left(\sum_{i \in S} R_i x_i + \sum_{i \notin S} R_i' x_i \right) \right] \\ \mathbf{E}[f(R)] &\approx_{\varepsilon} \sum_{\substack{S, T \subseteq [n] \\ |S|, |T| \leq Ck \\ S \cap T = \emptyset}} (-1)^{|T|} \mathbf{E}_{\substack{R_i \\ i \in S \cup T}} \left[\mathbf{1}_{S \cup T}' \cdot \mathbf{E} \left[p_{k, R_i} \left(\sum_{i \notin S \cup T} R_i' x_i \right) \right] \right] \end{aligned}$$

 $= \sum_{\substack{S, T \subseteq [n] \\ |S|, |T| \leq Ck \\ S \cap T = \emptyset}} (-1)^{|T|} \mathsf{E}_{\substack{Q_i \\ i \in S \cup T}} \left[\mathbf{1}_{S \cup T}' \cdot \mathsf{E} \left[\mathsf{P}_{k, Q_i} \left(\sum_{i \notin S \cup T} Q_i' \times_i \right) \right] \right] \approx_{\varepsilon} \mathsf{E}[F(\vec{Q})] \approx_{\varepsilon} \mathsf{E}[f(Q)]$

Proof Outline

- Let R_i be k-wise independent from \mathcal{D}_p , and Q_i be i.i.d.
- Let $R = \sum_{i} R_{i} x_{i}$ and $Q = \sum_{i} Q_{i} x_{i}$.
- Suppose $||x||_p = 1$.
- Want: $\mathbf{E}[I_{[a,b]}(Q)] \approx_{\varepsilon} \mathbf{E}[I_{[a,b]}(R)]$

Proof: $\mathbf{E}[I_{[a,b]}(Q)] \approx_{\varepsilon} \mathbf{E}[\tilde{I}^{c}_{[a,b]}(Q)] \approx_{\varepsilon} \mathbf{E}[\tilde{I}^{c}_{[a,b]}(R)] \approx_{\varepsilon} \mathbf{E}[I_{[a,b]}(R)]$

- (1) \rightarrow (2) \tilde{I}^c well-approximates I except for two length- $O(\varepsilon)$ strips. Use anticoncentration.
- $(2) \rightarrow (3)$ Main technical lemma.
- $(3) \rightarrow (4)$ Same as $(1) \rightarrow (2)$, but must prove anticoncentration.

Introduction

 F_p Algorithm

Lower Bounds

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Anticoncentration of R

F_p Algorithm

Lower Bounds

Conclusion

Anticoncentration of R

- $\|f^{(\ell)}\|_{\infty} = O(1/\varepsilon)^{\ell}$ \Rightarrow fooled with $k = O(1/\varepsilon^p)$
- Easy to show $\mathbf{E}[f(Q)] = O(\varepsilon)$
- $\Rightarrow \mathbf{E}[f(R)] = O(\varepsilon)$ by main technical lemma
- \Rightarrow anticoncentration in interval $[-\varepsilon, \varepsilon]$

Shift f to show anticoncentration in any width- $O(\varepsilon)$ interval.

Anticoncentration of R

$$f(x) = -\int_{-\infty}^{x/\varepsilon} \frac{\sin^4(y)}{y^3} dy$$

$$\|f^{(\ell)}\|_{\infty} = O(1/\varepsilon)^{\ell}$$

 \Rightarrow fooled with $k = O(1/\varepsilon^p)$

- Easy to show $\mathbf{E}[f(Q)] = O(\varepsilon)$
- $\Rightarrow \mathbf{E}[f(R)] = O(\varepsilon)$ by main technical lemma

• \Rightarrow anticoncentration in interval $[-\varepsilon, \varepsilon]$

Shift f to show anticoncentration in any width- $O(\varepsilon)$ interval.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Intuition for the new estimator

Our new estimator's final step:

"Let
$$y'_{\text{median}} = \text{median}\{|y'_j|\}_{j=1}^{r'}$$
.
Output $-y'_{\text{median}} \cdot \ln\left(\frac{1}{r}\sum_{j=1}^{r}\cos\left(\frac{y_j}{y'_{\text{median}}}\right)\right)$."

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Intuition for the new estimator

Our new estimator's final step:

"Let
$$y'_{\text{median}} = \text{median}\{|y'_j|\}_{j=1}^{r'}$$
.
Output $-y'_{\text{median}} \cdot \ln\left(\frac{1}{r}\sum_{j=1}^{r}\cos\left(\frac{y_j}{y'_{\text{median}}}\right)\right)$."

- We know $y'_{\text{median}} = \Theta(\|x\|_p).$
- Apply main technical lemma with $f(x) = \cos(x)$ to refine y'_{median} to a $(1 \pm \varepsilon)$ -approximation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Correcting to $(1 \pm \varepsilon)$ -approximation

$$Z \sim D_p$$

$$\mathbf{E}[\cos(BZ)] = \mathbf{E}\left[\frac{e^{iBZ} + e^{-iBZ}}{2}\right]$$

Can look at Fourier transform of pdf of \mathcal{D}_p to show $\mathbf{E}[\cos(BZ)] = e^{-|B|^p}$

Correcting to $(1\pm \varepsilon)$ -approximation

$$Z \sim D_p$$

$$\mathbf{E}[\cos(BZ)] = \mathbf{E}\left[\frac{e^{iBZ} + e^{-iBZ}}{2}\right]$$

Can look at Fourier transform of pdf of \mathcal{D}_p to show $\mathbf{E}[\cos(BZ)] = e^{-|B|^p}$

- Apply technical lemma to $f\left(\frac{y_j}{y'_{\text{median}}}\right)$ with $f(x) = \cos(x)$
- Use Chebyshev's inequality

Lower Bounds

Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lower bounds

Streaming lower bounds via communication complexity

- Alice, Bob know $f: \mathcal{X} \times \mathcal{Y} \rightarrow \{0, 1\}$
- Bob needs to compute f(x, y)
- Communication lower bounds ⇒ streaming space lower bounds (Alon, Matias, Szegedy '99)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Previous F_p lower bound

Woodruff '04 and Jayram, Kumar, Sivakumar '08 Indexing

• $\mathcal{X} = \{0,1\}^t$, $\mathcal{Y} = \{1,\ldots,t\}$

•
$$f(x,y) = x_y$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Previous F_p lower bound

Woodruff '04 and Jayram, Kumar, Sivakumar '08 Indexing

- $\mathcal{X} = \{0, 1\}^t$, $\mathcal{Y} = \{1, \dots, t\}$
- $f(x,y) = x_y$

Gap-Hamming

•
$$\mathcal{X} = \{0,1\}^{t'}, \ \mathcal{Y} = \{0,1\}^{t'}$$

• $f(x,y) = \begin{cases} 1 & \Delta(x,y) \ge \frac{t'}{2} + \sqrt{t'} \\ 0 & \Delta(x,y) \le \frac{t'}{2} - \sqrt{t'} \end{cases}$

Previous F_p lower bound

Woodruff '04 and Jayram, Kumar, Sivakumar '08 Indexing

- $\mathcal{X} = \{0, 1\}^t, \ \mathcal{Y} = \{1, \dots, t\}$
- $f(x,y) = x_y$

Gap-Hamming

•
$$\mathcal{X} = \{0,1\}^{t'}, \ \mathcal{Y} = \{0,1\}^{t'}$$

• $f(x,y) = \begin{cases} 1 & \Delta(x,y) \ge \frac{t'}{2} + \sqrt{t'} \\ 0 & \Delta(x,y) \le \frac{t'}{2} - \sqrt{t'} \end{cases}$
ndexing $\xrightarrow{\mathrm{JKS'08}}$ Gap-Hamming $\xrightarrow{\mathrm{Woodruff'04}} F_p$

Led to $\Omega(\min\{N, \varepsilon^{-2}\})$ lower bound for F_p

Lower Bounds

Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The new F_p lower bound

Augmented-Indexing

- $\mathcal{X} = \{0,1\}^t$, $\mathcal{Y} = \{1,\ldots,t\}$
- Bob also gets x_i for i > y

•
$$f(x,y) = x_y$$

Requires $\Omega(t)$ communication (MNSW '98)

F_p Algorithm

Lower Bounds

Conclusion

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

An F_1 lower bound

Theorem (1 ± ε)-approximation of F_1 requires $\Omega(\min\{N, \varepsilon^{-2} \log M\})$ space Proof.

F_p Algorithm

Lower Bounds

Conclusion

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

An F_1 lower bound

Theorem (1 ± ε)-approximation of F_1 requires $\Omega(\min\{N, \varepsilon^{-2} \log M\})$ space Proof.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An F_1 lower bound

Step 1:

Step 2:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Conclusion

An F_1 lower bound

Step 3: For *i*th Gap-Ham vector z_i , if $z_{i,j} = 1$ Alice puts $((i, j), 2^i)$ in stream

イロト 不得 トイヨト イヨト

3

Conclusion

An F_1 lower bound

Step 3: For *i*th Gap-Ham vector z_i , if $z_{i,j} = 1$ Alice puts $((i, j), 2^i)$ in stream

Step 4: Alice sends algorithm state + weight of each block

An F_1 lower bound

Step 3: For *i*th Gap-Ham vector z_i , if $z_{i,j} = 1$ Alice puts $((i, j), 2^i)$ in stream

Step 4: Alice sends algorithm state + weight of each block

Step 5: Bob deletes contribution of blocks larger than his own

 F_{D} Algorithm

Lower Bounds

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- F_p in optimal space with O(1) update time?
- Find other applications for FT-mollification.

Open problems (some progress)

- F_p in optimal space with O(1) update time?
 [N., Woodruff] p = 1 with ε⁻² log^{O(1)}(nmM) space, log^{O(1)}(nmM) update time
- Find other applications for FT-mollification.

[Kane, N., Woodruff] FT-mollification actually gives an alternative proof that bounded independence fools regular halfspaces ($[DGJ^+09]$).

[Diakonikolas, Kane, N.] Showed bounded independence fools degree-2 threshold functions, via FT-mollification.

Lower Bounds

Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Other news announcements

[Kane, N., Woodruff]: Optimal distinct elements algorithm.

- O(ε⁻² + log(n)) bits of space
- O(1) worst-case update and reporting times
Conclusion

Fooling regular halfspaces

- $H_{a,\theta} = \{x : \langle a, x \rangle \ge \theta\}$ (a halfspace).
- Theorem [DGJ⁺09]: Pr[x ∈ H_{a,θ}] ≈_ε Pr[y ∈ H_{a,θ}] for k = Õ(1/ε²). x_i are i.i.d., y_i are k-wise independent.
- The [DGJ⁺09] proof outline:
 - 1. Reduce to case when $|a_i| \leq \varepsilon$ for all i
 - Show the theorem in the case when every |a_i| ≤ ε (the "regular" case)

Conclusion

Fooling regular halfspaces

- $H_{a,\theta} = \{x : \langle a, x \rangle \ge \theta\}$ (a halfspace).
- Theorem [DGJ⁺09]: Pr[x ∈ H_{a,θ}] ≈_ε Pr[y ∈ H_{a,θ}] for k = Õ(1/ε²). x_i are i.i.d., y_i are k-wise independent.
- The [DGJ⁺09] proof outline:
 - 1. Reduce to case when $|a_i| \leq \varepsilon$ for all i
 - 2. Show the theorem in the case when every $|a_i| \leq \varepsilon$ (the "regular" case)
- Proof of 2 via FT-mollification: $\mathbf{E}[I_{[\theta,\infty)}(\langle a, x \rangle)] \approx_{\varepsilon} \mathbf{E}[\tilde{I}^{c}_{[\theta,\infty)}(\langle a, x \rangle)] \approx_{\varepsilon} \mathbf{E}[\tilde{I}^{c}_{[\theta,\infty)}(\langle a, y \rangle)] \approx_{\varepsilon} \mathbf{E}[I_{[\theta,\infty)}(\langle a, y \rangle)].$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Fooling degree-2 threshold functions Statement: $\mathbf{E}[\operatorname{sign}(p(x))] \approx_{\varepsilon} \mathbf{E}[\operatorname{sign}(p(y))]$ for $k = \operatorname{poly}(1/\varepsilon)$, p a degree-2 polynomial.

Conclusion

Fooling degree-2 threshold functions Statement: $\mathbf{E}[\operatorname{sign}(p(x))] \approx_{\varepsilon} \mathbf{E}[\operatorname{sign}(p(y))]$ for $k = \operatorname{poly}(1/\varepsilon)$, p a degree-2 polynomial.

- Some savings in the known applications: (1) Ω(1/ε^p)-wise independence fools Indyk's estimator, (2) Ω(1/ε²)-wise independence ε-fools regular halfspaces (no more logs).
- A new statement: Bounded independence fools Goemans-Williamson hyperplane rounding.

Fooling degree-2 threshold functions Statement: $\mathbf{E}[\operatorname{sign}(p(x))] \approx_{\varepsilon} \mathbf{E}[\operatorname{sign}(p(y))]$ for $k = \operatorname{poly}(1/\varepsilon)$, p a degree-2 polynomial.

- Some savings in the known applications: (1) Ω(1/ε^p)-wise independence fools Indyk's estimator, (2) Ω(1/ε²)-wise independence ε-fools regular halfspaces (no more logs).
- A new statement: Bounded independence fools Goemans-Williamson hyperplane rounding.
- Idea of proof:
 - 1. $p = p_1 p_2 + p_3 + p_4 + C$, p_1, p_2 pos. semidef. with no small non-zero eigenvalues, p_3 indefinite with only small eigenvalues, p_4 a linear form, C a constant.
 - 2. Let Δ be the trace of the symmetric matrix associated with p_3 .
 - 3. Define $R \subseteq \mathbb{R}^4$ by $R = \{z : z_1^2 z_2^2 + z_3 + z_4 + \Delta + C > 0\}.$
 - 4. $\mathbf{E}[I_R(M(x))] \approx_{\varepsilon} \mathbf{E}[\tilde{I}_R^c(M(x))] \approx_{\varepsilon} \mathbf{E}[\tilde{I}_R^c(M(y))] \approx_{\varepsilon} \mathbf{E}[I_R(M(y))]$ for $M(z) = (\sqrt{p_1(z)}, \sqrt{p_2(z)}, p_3(z) - \Delta, p_4(z)).$