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Lower Bounds Paradigms

Algorithm design:

divide & conquer, greedy, dynamic programming, LP relaxation, . . .

Lower bounds: ? ? ?

• Information complexity paradigm [C.-Shi-Wirth-Yao’01]

• Round elimination paradigm [Miltersen-Nisan-Safra-Wigderson’95]
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Multi-Pass Lower Bounds

Data streams: two broad application scenarios

• Networks: Busy router, packets whizzing by

– Web traffic statistics

– Intrusion detection

• Databases: Huge DB, linear scan cheaper than random access

– Query optimisation: join size estimation

– Log analysis
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Multi-Pass Lower Bounds

Data streams: two broad application scenarios

• Networks: Busy router, packets whizzing by

– Web traffic statistics

– Intrusion detection

• Databases: Huge DB, linear scan cheaper than random access

– Query optimisation: join size estimation

– Log analysis

• DB setting: Multiple passes meaningful

This talk: Pass/space tradeoffs for some basic stream problems
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Data Stream Model

• Formally: input stream = n tokens, each token ∈ [m]

– Assume log m = Θ(log n)

• Compute some function of stream, using

– Small space, s ≪ m, n ... ideally, s = O(log n)

– Small number of passes, p
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Problems of Interest

Class A:

• Median

Class B:

• Distinct elements

• Frequency moments

• Empirical entropy
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Class B:

• Distinct elements , F0

• Frequency moments , Fk =
∑m

i=1 freq(i)k

• Empirical entropy , H =
∑m

i=1(freq(i)/m)·log(m/freq(i))

Amit Chakrabarti 5-b



Multi-Pass Lower Bounds Dec 20, 2009

Problems of Interest

Class A:

• Median

• Key question: Want s = O(log n); then p = ??

– Dates back to first “data streams” paper [Munro-Paterson’78]

Class B:

• Distinct elements , F0

• Frequency moments , Fk =
∑m

i=1 freq(i)k

• Empirical entropy , H =
∑m

i=1(freq(i)/m)·log(m/freq(i))

• Key question: Want ε-approx; then s = ??

– One-pass: eO(ε−2), eΩ(ε−2) [BarYossef-J.-K.-S.-T.’02]; [Woodruff’04]

– Dependence of s on n: [A-M-S’96]; [C.-Khot-Sun’03]; [Gronemeier’09]
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Our Results (Answering the Key Questions)

Class A: Median [C.-Cormode-McGregor’08]

• Achieving s = O(log n) requires p = Ω(log n)

• If tokens randomly ordered, requires p = Ω(log log n)

• Above lower bounds are tight [Guha-McGregor’07]
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Our Results (Answering the Key Questions)

Class A: Median [C.-Cormode-McGregor’08]

• Achieving s = O(log n) requires p = Ω(log n)

• If tokens randomly ordered, requires p = Ω(log log n)

– Specifically: s ≈ Ω(n1/p)
h
Ω(n2

−p

)
i

for adversarial [random] order

• Above lower bounds are tight [Guha-McGregor’07]
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Our Results (Answering the Key Questions)

Class A: Median [C.-Cormode-McGregor’08]

• Achieving s = O(log n) requires p = Ω(log n)

• If tokens randomly ordered, requires p = Ω(log log n)

– Specifically: s ≈ Ω(n1/p)
h
Ω(n2

−p

)
i

for adversarial [random] order

• Above lower bounds are tight [Guha-McGregor’07]

Class B: Distinct elements [Brody-C.’09]

• Need s = Ω(1/ε2) space for any p = O(1)

– Specifically: s = eΩ(1/(ε2p2)) [Brody-C.-Regev-Vidick-deWolf’10]

• Holds under random order, and even random data

• Matching upper bound, even with one pass and adversarial data
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Method: Reduce from Communication Complexity

32 17 1 25 31 5 6 27 16 21 24 13129 18414 22 11 29 2 7 3 23 30 8 20 19 1510 28 26

p-pass streaming algorithm =⇒ Θ(p)-round communication protocol

messages = memory contents of streaming algorithm
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Communication vs Data Stream
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Alice Bob Carl

22 3 18 23 30 8 20 19 159 12 32 17 1 28 25 31 5 6 27 264 16 21 24 1310 11 29 2 714

split amongst many players

32 17 1 25 31 5 6 27 16 21 24 13129 18414 22 11 29 2 7 3 23 30 8 20 19 1510 28 26

p-pass streaming algorithm =⇒ Θ(p)-round communication protocol

messages = memory contents of streaming algorithm
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Communication vs Data Stream
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messages = memory contents of streaming algorithm
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The Round Elimination Paradigm

If there exists...

msg3 msg3 msg3 msg3

msg2 msg2msg2msg2

A

A B

B C

C D

D

Round 2:
Input:

Round 3:

Round 1:
msg1 msg1 msg1 msg1

A B C D

with short messages, then there exists...

Padding:
msg3 msg3 msg3 msg3

msg2 msg2msg2msg2

A

A B

B C

C D

D

Round 2:
Input:

Round 3:
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The Round Elimination Paradigm

If there exists...

msg3 msg3 msg3 msg3

msg2 msg2msg2msg2

A

A B

B C

C D

D

Round 2:
Input:

Round 3:

Round 1:
msg1 msg1 msg1 msg1

A B C D

with short messages, then there exists...

Padding:
msg3 msg3 msg3 msg3

msg2 msg2msg2msg2

A

A B

B C

C D

D

Round 2:
Input:

Round 3:

Eventually, if original protocol too short,

then 0-round protocol for a nontrivial problem =⇒ Contradiction

Amit Chakrabarti 8-a



Multi-Pass Lower Bounds Dec 20, 2009

Class A: Median
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Tree Pointer Jumping

Complete k-level t-ary tree T

Input φ : V (T ) → [t] with φ(leaf) ∈ {0, 1}
Player i knows φ at level i

gφ(v) :=





φ(v)-th child of v, if v internal

φ(v), if v leaf

Desired output = gφ(gφ(· · · gφ(root) · · · ))

Model: k − 1 rounds of communication

Each round: (Plr 1, Plr 2, . . . , Plr k)

Call this tpjk,t 1 0 0 1 1 1 00 1

Level

Level

2

3

Level 1
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Weight-Based TPJ

Theorem: For uniform random input, 1
3 -error, CCp(tpjp+1,t) = Ω(t/p2)

Contrast: Dp(tpjp+1,t) = O(t) and Dp+1(tpjp+1,t) = O(p log t)
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Weight-Based TPJ

Theorem: For uniform random input, 1
3 -error, CCp(tpjp+1,t) = Ω(t/p2)

Contrast: Dp(tpjp+1,t) = O(t) and Dp+1(tpjp+1,t) = O(p log t)

Actually, use a variant w-tpj (weight-based):

• Input specifies xv ∈ {0, 1}ℓv with φ(v) = t
2 + bias(|xv|)

• Lengths ℓv = tlevel(v)−1

Median lower bound: reduction from w-tpj (next slide)
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Theorem: For uniform random input, 1
3 -error, CCp(tpjp+1,t) = Ω(t/p2)

Contrast: Dp(tpjp+1,t) = O(t) and Dp+1(tpjp+1,t) = O(p log t)

Actually, use a variant w-tpj (weight-based):

• Input specifies xv ∈ {0, 1}ℓv with φ(v) = t
2 + bias(|xv|)

• Lengths ℓv = tlevel(v)−1

Median lower bound: reduction from w-tpj (next slide)

Robust communication complexity: Above CC lower bound still holds

when input bits allocated amongst players at random.

Relevant theory developed in [C.-Cormode-McGregor’08]
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Weight-Based TPJ

Theorem: For uniform random input, 1
3 -error, CCp(tpjp+1,t) = Ω(t/p2)

Contrast: Dp(tpjp+1,t) = O(t) and Dp+1(tpjp+1,t) = O(p log t)

Actually, use a variant w-tpj (weight-based):

• Input specifies xv ∈ {0, 1}ℓv with φ(v) = t
2 + bias(|xv|)

• Lengths ℓv = tlevel(v)−1

• For random order, ℓv ≈ t2
level(v)−1

(hence, smaller lower bound)

Median lower bound: reduction from w-tpj (next slide)

Robust communication complexity: Above CC lower bound still holds

when input bits allocated amongst players at random.

Relevant theory developed in [C.-Cormode-McGregor’08]
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From TPJ to Median

Map each input bit to an integer: x 7−→ multiset Sx, s.t.

w-tpj(x) = LSB(median(Sx))

Basic idea, for k = 2 levels:

• At level 2, 0 7→ −∞ (min value) and 1 7→ +∞ (max value)

• At level 1, xi 7→ 2i + xi (for ith leaf)

2

1 1 0 0

5 7 8 10

0

0,1,1,1 −∞, +∞, +∞, +∞

5t = 
2k = 
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Class B: Distinct Elements
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The Gap-Hamming-Distance Problem

Input: Alice gets x ∈ {0, 1}n, Bob gets y ∈ {0, 1}n.

Output:

• ghd(x, y) = 1 if ∆(x, y) > n
2 +

√
n

• ghd(x, y) = 0 if ∆(x, y) < n
2 −√

n

Want: randomized, constant error protocol

Cost: Worst case number of bits communicated

1

x =

y =

0

0 0

0 0

0 0

0 1 1

11 0 0

00 1

10

1 1

0

0

n = 12; ∆(x, y) = 3 ∈ [6 −
√

12, 6 +
√

12]
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The Reductions

E.g., Distinct Elements (Other problems: similar)

(9
,0)

y = 0 0 0 0 11 0 0 10 0 1

(1
2,1

)

(1
1,0

)

(1
0,0

)

(1
2,1

)

(1
1,0

)

(1
0,0

)

x = 0 0 0 0 1 1 00 11 1 0
(1

,0)

(3
,0)

(4
,0)

(6
,0)

(8
,0)

(7
,0)

(2
,0)

(5
,0)

(9
,1)τ :

σ : (1
,0)

(3
,0)

(4
,0)

(2
,1)

(5
,1)

(6
,0)

(8
,0)

(7
,0)

Alice: x 7−→ σ = 〈(1, x1), (2, x2), . . . , (n, xn)〉
Bob: y 7−→ τ = 〈(1, y1), (2, y2), . . . , (n, yn)〉

Notice: F0(σ ◦ τ) = n + ∆(x, y) =





< 3n
2 −√

n, or

> 3n
2 +

√
n.

Set ε = 1√
n
.
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State of Play, Jan. 2009

Using one round = one message...

Previous results [Indyk-Woodruff’03], [Woodruff’04], [C.-Cormode-McGregor’07]:

• For one-round protocols, R→(ghd) = Ω(n)

• Implies the Ω̃(ε−2) streaming lower bounds
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• For one-round protocols, R→(ghd) = Ω(n)

• Implies the Ω̃(ε−2) streaming lower bounds

Key open questions:

• What is the two-way randomized complexity R(ghd)?

• Better algorithm for Distinct Elements (or Fk, or H) using two passes?
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• For one-round protocols, R→(ghd) = Ω(n)

• Implies the Ω̃(ε−2) streaming lower bounds

Key open questions:

• What is the two-way randomized complexity R(ghd)?

• Better algorithm for Distinct Elements (or Fk, or H) using two passes?

New Results

Summer Thm: RO(1)(ghd) = Ω(n); i.e., O(1) rounds/passes no better
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State of Play, Jan. 2009

Using one round = one message...

Previous results [Indyk-Woodruff’03], [Woodruff’04], [C.-Cormode-McGregor’07]:

• For one-round protocols, R→(ghd) = Ω(n)

• Implies the Ω̃(ε−2) streaming lower bounds

Key open questions:

• What is the two-way randomized complexity R(ghd)?

• Better algorithm for Distinct Elements (or Fk, or H) using two passes?

New Results

Summer Thm: RO(1)(ghd) = Ω(n); i.e., O(1) rounds/passes no better

Winter Thm: Rp(ghd) = Ω̃(n/p2); previously was Ω̃(n/2O(p2))

Remark: These hold under uniform input distribution
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A Simplification

Will prove distributional lower bound under uniform dist

In this setting, may as well work with threshold version, thd

• thd(x, y) = 1 if ∆(x, y) ≥ n
2

• thd(x, y) = 0 if ∆(x, y) < n
2

Amit Chakrabarti 17
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Round Elimination V1.0: Subcube Lifting

First message constant on large set:

1 1 100

00 111

11 1 1 1

11 1 0 0

11 000

10 100

0

0

1

1

0

1

1

1

1

0

0

1

}2
points

0.99n

Alice, Bob lift their (n/3)-dim inputs from inner coords to full n-dim space

First message now redundant, so eliminate!
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S:
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Round Elimination V1.0: Subcube Lifting

First message constant on large set:

1 1 100

00 111

11 1 1 1

11 1 0 0

11 000

10 100

0

0

1

1

0

1

1

1

1

0

0

1

}2
points

0.99n

0

0

1

1

0

1

1

1

1

0

0

1

inner coords, the real input

(Rest: outer coords, padding)

S:

Alice, Bob lift their (n/3)-dim inputs from inner coords to full n-dim space

First message now redundant, so eliminate! [Brody-C.’09]
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Subcube Lifting: Wasteful?

• Each step: dimension n −→ n/3

• Inherently, can eliminate at most O(log n) rounds

In fact, get Rp(ghd) = n/2O(p2)

• Solved long-standing open problem (IITK 2006 list)... happy?

Rethinking Round Elimination

• Crux: delete first round, solve simpler instance

• Simpler need not mean smaller!

E.g., could mean increased error prob.
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Subcube Lifting: Wasteful?

• Each step: dimension n −→ n/3

• Inherently, can eliminate at most O(log n) rounds

In fact, get Rp(ghd) = n/2O(p2)

• Solved long-standing open problem (IITK 2006 list)... happy?

Rethinking Round Elimination

• Crux: delete first round, solve simpler instance

• Simpler need not mean smaller!

E.g., could mean increased error prob.
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Round Elimination V2.0: Geometric Perturbation

Max message size = cn

First message constant over set A of size 2n−cn

A

{0,1}
n

Alice: replace x with z = NearestNeighbour(x, A)
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Round Elimination V2.0: Geometric Perturbation

Max message size = cn

First message constant over set A of size 2n−cn

A

{0,1}
n

x

y

Alice: replace x with z = NearestNeighbour(x, A)
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Round Elimination V2.0: Geometric Perturbation

Max message size = cn

First message constant over set A of size 2n−cn

A

{0,1}
n

x

y

z

Alice: replace x with z = NearestNeighbour(x, A)
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Geometric Perturbation: A Better Picture

xz

c
1/2
n

ERR

{0,1}
n

Pr[A] = 2−cn . . . . . . thus, w.h.p., ∆(x, z) ≤ (
√

cn std devs) =
√

c · n
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Geometric Perturbation: A Better Picture

xz

c
1/2
n

ERR

{0,1}
n

Pr[A] = 2−cn . . . . . . thus, w.h.p., ∆(x, z) ≤ (
√

cn std devs) =
√

c · n
Assumed A is Hamming ball . . . . . .
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Geometric Perturbation: A Better Picture

xz

c
1/2
n

ERR

{0,1}
n

Pr[A] = 2−cn . . . . . . thus, w.h.p., ∆(x, z) ≤ (
√

cn std devs) =
√

c · n
Assumed A is Hamming ball . . . . . . that’s indeed the worst case [Harper’66]
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Round Elimination: Analysis

Alice: x ∈R {0, 1}n 7−→ z ∼ ??; Bob: y ∈R {0, 1}n

Why does the shorter protocol work?
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Round Elimination: Analysis

Alice: x ∈R {0, 1}n 7−→ z ∼ ??; Bob: y ∈R {0, 1}n

Why does the shorter protocol work?

How can it fail? Two ways:

• E1: ∆(x, y) too close to n/2

• E2: Not near threshold, but thd(x, y) 6= thd(z, y)
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Why does the shorter protocol work?

How can it fail? Two ways:

• E1: ∆(x, y) too close to n/2

• E2: Not near threshold, but thd(x, y) 6= thd(z, y)

Estimating the probabilities:

• E1: “anticoncentration” of Binomial dist
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Round Elimination: Analysis

Alice: x ∈R {0, 1}n 7−→ z ∼ ??; Bob: y ∈R {0, 1}n

Why does the shorter protocol work?

How can it fail? Two ways:

• E1: ∆(x, y) too close to n/2

• E2: Not near threshold, but thd(x, y) 6= thd(z, y)

Estimating the probabilities:

• E1: “anticoncentration” of Binomial dist

Pr
[
|∆(x, y) − n/2| < δ

√
n

]
≤ δ

Amit Chakrabarti 22-c
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Round Elimination: Analysis

Alice: x ∈R {0, 1}n 7−→ z ∼ ??; Bob: y ∈R {0, 1}n

Why does the shorter protocol work?

How can it fail? Two ways:

• E1: ∆(x, y) too close to n/2

• E2: Not near threshold, but thd(x, y) 6= thd(z, y)

Estimating the probabilities:

• E1: “anticoncentration” of Binomial dist

Pr
[
|∆(x, y) − n/2| < δ

√
n

]
≤ δ

• E2: shift to assume x = ~0

Pr
[
|y| < n/2 − δ

√
n ∧ |y ⊕ z| > n/2

]
≤ ??
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Round Elimination: Analysis

Alice: x ∈R {0, 1}n 7−→ z ∼ ??; Bob: y ∈R {0, 1}n

Why does the shorter protocol work?

How can it fail? Two ways:

• E1: ∆(x, y) too close to n/2

• E2: Not near threshold, but thd(x, y) 6= thd(z, y)

Estimating the probabilities:

• E1: “anticoncentration” of Binomial dist

Pr
[
|∆(x, y) − n/2| < δ

√
n

]
≤ δ

• E2: shift to assume x = ~0

Pr
[
|y| < n/2 − δ

√
n ∧ |y ⊕ z| > n/2

]
≤ ??

Recall: |z| = ∆(x, z) ≤ √
c · n, w.h.p.
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Switcheroo

Fixed y ∈ {0, 1}n, with |y| < n/2 − δ
√

n

Random z ∈R {0, 1}n, with |z| ≤ √
c · n

Recall: first message length = cn

Pr
[
|y ⊕ z| > n/2

]
≤ ??
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Switcheroo

Fixed y ∈ {0, 1}n, with |y| < n/2 − δ
√

n

Random z ∈R {0, 1}n, with |z| ≤ √
c · n

Recall: first message length = cn

Pr
[
|y ⊕ z| > n/2

]
≤ ??

Random coordinate flipping: y 7−→ y ⊕ z

Expect |y| to change by about
√√

c · n
W.h.p., change is no more than c1/4

√
n log p [Hoeffding’63]

We’re good if this = δ
√

n, i.e., if δ = c1/4 log1/2 p
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Switcheroo

Fixed y ∈ {0, 1}n, with |y| < n/2 − δ
√

n

Random z ∈R {0, 1}n, with |z| ≤ √
c · n

Recall: first message length = cn

Pr
[
|y ⊕ z| > n/2

]
≤ ??

Random coordinate flipping: y 7−→ y ⊕ z

Expect |y| to change by about
√√

c · n
W.h.p., change is no more than c1/4

√
n log p [Hoeffding’63]

We’re good if this = δ
√

n, i.e., if δ = c1/4 log1/2 p

Overall error = δ+(tiny) ≈ c1/4 log1/2 p

Amit Chakrabarti 23-d



Multi-Pass Lower Bounds Dec 20, 2009

Round Elimination: Wrap-Up

• Killed a message of length cn, adding c1/4 log1/2 p to error

• Have to do this p times

• Final error must be Ω(1), else contradiction

=⇒ pc1/4 log1/2 p = Ω(1)

=⇒ (max comm) = Ω(n/p4 log2 p)

[Brody-C.-Regev-Vidick-deWolf’10]
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Round Elimination: Wrap-Up

• Killed a message of length cn, adding c1/4 log1/2 p to error

• Have to do this p times

• Final error must be Ω(1), else contradiction

=⇒ pc1/4 log1/2 p = Ω(1)

=⇒ (max comm) = Ω(n/p4 log2 p)

• Work on sphere, not Hamming cube: Rp(ghd) = Ω(n/p2 log p)

x ∈ {0, 1}n 7−→ x̃ ∈
{
− 1√

n
,

1√
n

}n

ghd 7−→ Gap-Inner-Product

[Brody-C.-Regev-Vidick-deWolf’10]
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Why Did This Take So Long?

Multi-pass lower bounds for Distinct Elements and Fk has been an important

open question since at least 2003. Why did it remain open for so long?
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Why Did This Take So Long?

Multi-pass lower bounds for Distinct Elements and Fk has been an important

open question since at least 2003. Why did it remain open for so long?

Underlying communication problem thorny! Resists the “usual” attacks:

• Rectangle-based methods (discrepancy/corruption)

• Approximate polynomial degree

• Pattern matrix, Factorization norms [Sherstov’08], [Linial-Shraibman’07]

• Information complexity [C.-Shi-Wirth-Yao’01], [BarYossef-J.-K.-S.’02]

Amit Chakrabarti 25-b



Multi-Pass Lower Bounds Dec 20, 2009

Why Did This Take So Long?

Multi-pass lower bounds for Distinct Elements and Fk has been an important

open question since at least 2003. Why did it remain open for so long?

Underlying communication problem thorny! Resists the “usual” attacks:

• Rectangle-based methods (discrepancy/corruption)

Matrix has large near-monochromatic rectangles

• Approximate polynomial degree

• Pattern matrix, Factorization norms [Sherstov’08], [Linial-Shraibman’07]

• Information complexity [C.-Shi-Wirth-Yao’01], [BarYossef-J.-K.-S.’02]

Amit Chakrabarti 25-c



Multi-Pass Lower Bounds Dec 20, 2009

Why Did This Take So Long?

Multi-pass lower bounds for Distinct Elements and Fk has been an important

open question since at least 2003. Why did it remain open for so long?

Underlying communication problem thorny! Resists the “usual” attacks:

• Rectangle-based methods (discrepancy/corruption)

Matrix has large near-monochromatic rectangles

• Approximate polynomial degree

Underlying predicate has approx degree Õ(
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Why Did This Take So Long?

Multi-pass lower bounds for Distinct Elements and Fk has been an important

open question since at least 2003. Why did it remain open for so long?

Underlying communication problem thorny! Resists the “usual” attacks:

• Rectangle-based methods (discrepancy/corruption)

Matrix has large near-monochromatic rectangles

• Approximate polynomial degree

Underlying predicate has approx degree Õ(
√

n)

• Pattern matrix, Factorization norms [Sherstov’08], [Linial-Shraibman’07]

Quantum communication upper bound O(
√

n log n)

• Information complexity [C.-Shi-Wirth-Yao’01], [BarYossef-J.-K.-S.’02]
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Why Did This Take So Long?

Multi-pass lower bounds for Distinct Elements and Fk has been an important

open question since at least 2003. Why did it remain open for so long?

Underlying communication problem thorny! Resists the “usual” attacks:

• Rectangle-based methods (discrepancy/corruption)

Matrix has large near-monochromatic rectangles

• Approximate polynomial degree

Underlying predicate has approx degree Õ(
√

n)

• Pattern matrix, Factorization norms [Sherstov’08], [Linial-Shraibman’07]

Quantum communication upper bound O(
√

n log n)

• Information complexity [C.-Shi-Wirth-Yao’01], [BarYossef-J.-K.-S.’02]

Hmm! Can’t see a concrete obstacle
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Final Remarks

Summary:

1. Round elimination is a great paradigm for proving lower bounds

(especially when you don’t over-define it).

2. Gives clean proofs

3. Cases in point: Multi-player Pointer Jumping, Gap-Hamming-Distance

4. Data stream consequences
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Final Remarks

Summary:

1. Round elimination is a great paradigm for proving lower bounds

(especially when you don’t over-define it).

2. Gives clean proofs

3. Cases in point: Multi-player Pointer Jumping, Gap-Hamming-Distance

4. Data stream consequences

Open “problems”:

1. Understand communication complexity of

“gap problems” better... get further streaming results.

2. Apply round elimination to your favourite problem.
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Breaking News

Very recently, Oded Regev proved a remarkable new “corre-

lation inequality” for Gaussian distributions.

This, plus a new generalization of the rectangle method, im-

plies that R(ghd) = Ω(n).
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