
Sparse Local Embeddings for Extreme Multi-label Classification

Kush Bhatia t-kushb@microsoft.com

Microsoft Research, India

Himanshu Jain himanshu.j689@gmail.com

Indian Institute of Technology Delhi, India

Purushottam Kar purushot@cse.iitk.ac.in

Indian Institute of Technology Kanpur, India

Manik Varma manik@microsoft.com
Prateek Jain prajain@microsoft.com

Microsoft Research, India

Abstract

The objective in extreme multi-label learn-
ing is to train a classifier that can automat-
ically tag a novel data point with the most
relevant subset of labels from an extremely
large label set. Embedding based approaches
make training and prediction tractable by as-
suming that the training label matrix is low-
rank and hence the effective number of la-
bels can be reduced by projecting the high
dimensional label vectors onto a low dimen-
sional linear subspace. Still, leading embed-
ding approaches have been unable to deliver
high prediction accuracies or scale to large
problems as the low rank assumption is vio-
lated in most real world applications.

This paper develops the SLEEC classifier to
address both limitations. The main techni-
cal contribution in SLEEC is a formulation
for learning a small ensemble of local dis-
tance preserving embeddings which can ac-
curately predict infrequently occurring (tail)
labels. This allows SLEEC to break free
of the traditional low-rank assumption and
boost classification accuracy by learning em-
beddings which preserve pairwise distances
between only the nearest label vectors.

Preliminary work. Under review by the Indian Workshop
on Machine Learning (iWML). Do not distribute.

1. Introduction

In this paper we develop SLEEC (Sparse Local Embed-
dings for Extreme Classification), an extreme multi-
label classifier that can make significantly more accu-
rate and faster predictions, as well as scale to larger
problems, as compared to state-of-the-art embedding
based approaches.

eXtreme Multi-label Learning (XML) addresses the
problem of learning a classifier that can automatically
tag a data point with the most relevant subset of la-
bels from a large label set. For instance, there are
more than a million labels (categories) on Wikipedia
and one might wish to build a classifier that annotates
a new article or web page with the subset of most rel-
evant Wikipedia categories. It should be emphasized
that multi-label learning is distinct from multi-class
classification where the aim is to predict a single mu-
tually exclusive label.

Challenges: XML is a hard problem that involves
learning with hundreds of thousands, or even millions,
of labels, features and training points. Although, some
of these problems can be ameliorated using a label hi-
erarchy, such hierarchies are unavailable in many ap-
plications (Agrawal et al., 2013; Weston et al., 2013).
In this setting, an obvious baseline is thus provided by
the 1-vs-All technique which seeks to learn an an in-
dependent classifier per label. As expected, this tech-
nique is infeasible due to the prohibitive training and
prediction costs given the large number of labels.

Embedding-based approaches: A natural way of
overcoming the above problem is to reduce the effec-
tive number of labels. Embedding based approaches



Sparse Local Embeddings for Extreme Multi-label Classification

try to do so by projecting label vectors onto a low di-
mensional space, based on an assumption that the la-
bel matrix is low-rank. More specifically, given a set of
n training points {(xi,yi)ni=1} with d-dimensional fea-
ture vectors xi ∈ Rd and L-dimensional label vectors
yi ∈ {0, 1}L, state-of-the-art embedding approaches

project the label vectors onto a lower L̂-dimensional
linear subspace as zi = Uyi. Regressors are then
trained to predict zi as Vxi. Labels for a novel point x
are predicted by post-processing y = U†Vx where U†

is a decompression matrix which lifts the embedded
label vectors back to the original label space.

Embedding methods mainly differ in the choice of
their compression and decompression techniques such
as compressed sensing (Hsu et al., 2009), Bloom fil-
ters (Cissé et al., 2013), SVD (Tai & Lin, 2010), land-
mark labels (Balasubramanian & Lebanon, 2012; Bi &
Kwok, 2013), output codes (Zhang & Schneider, 2011),
etc. The state-of-the-art LEML algorithm (Yu et al.,
2014) directly optimizes for U†, V using a regularized
least squares objective.

Embedding approaches also have limitations – they
are slow at training and prediction even for small em-
bedding dimensions L̂. More importantly, the criti-
cal assumption made by embedding methods, that the
training label matrix is low-rank, is violated in almost
all real world applications. Figure 1(a) plots the ap-

proximation error in the label matrix as L̂ is varied
on the WikiLSHTC data set. As is clear, even with
a 500-dimensional subspace the label matrix still has
90% approximation error. This happens primarily due
to the presence of hundreds of thousands of “tail” la-
bels (Figure 1(b)) which occur in at most 5 data points
each and, hence, cannot be well approximated by any
linear low dimensional basis.

Tree-based approaches: Recently, tree based meth-
ods (Agrawal et al., 2013; Prabhu & Varma, 2014; We-
ston et al., 2013) have also become popular for XML as
they enjoy significant accuracy gains over the existing
embedding methods. For instance, FastXML (Prabhu
& Varma, 2014) can achieve a prediction accuracy of
49% on WikiLSHTC using a 50 tree ensemble. How-
ever, using SLEEC, we are now able to extend embed-
ding methods to outperform tree ensembles, achieving
49.8% with 2 learners and 55% with 10. Thus, SLEEC
obtains the best of both worlds – achieving the high-
est prediction accuracies across all methods on even
the most challenging data sets, as well as retaining all
the benefits of embeddings and eschewing the disad-
vantages of large tree ensembles such as large model
size and lack of theoretical understanding.

2. Method
Let D = {(x1,y1) . . . (xn,yn)} be the given training
data set, xi ∈ X ⊆ Rd be the input feature vector, yi ∈
Y ⊆ {0, 1}L be the corresponding label vector, and
yij = 1 iff the j-th label is turned on for xi. Let X =
[x1, . . . ,xn] be the data matrix and Y = [y1, . . . ,yn]
be the label matrix. Given D, the goal is to learn a
multi-label classifier f : Rd → {0, 1}L that accurately
predicts the label vector for a given test point. Recall
that in XML settings, L is very large and is of the
same order as n and d, ruling out several standard
approaches such as 1-vs-All.

We now present our algorithm SLEEC which is de-
signed primarily to scale efficiently for large L. Our
algorithm is an embedding-style algorithm, i.e., during
training we map the label vectors yi to L̂-dimensional

vectors zi ∈ RL̂ and learn a set of regressors V ∈ RL̂×d
s.t. zi ≈ V xi,∀i. During the test phase, for an unseen
point x, we first compute its embedding V x and then
perform kNN over the set [V x1, V x2, . . . , V xn]. To
scale our algorithm, we perform a clustering of all the
training points and apply the above mentioned proce-
dures in each of the cluster separately. Below, we first
discuss our method to compute the embeddings zis
and the regressors V . Section 2.2 then discusses our
approach for scaling the method to large data sets.

2.1. Learning Embeddings

As mentioned earlier, our approach is motivated by
the fact that a typical real-world data set tends to
have a large number of tail labels that ensure that
the label matrix Y cannot be well-approximated us-
ing a low-dimensional linear subspace (see Figure 1).
However, Y can still be accurately modelled using a
low-dimensional non-linear manifold. That is, instead
of preserving distances (or inner products) of a given
label vector to all the training points, we attempt to
preserve the distance to only a few nearest neighbors.
That is, we wish to find a L̂-dimensional embedding

matrix Z = [z1, . . . , zn] ∈ RL̂×n which minimizes the
following objective:

min
Z∈RL̂×n

‖PΩ(Y TY )− PΩ(ZTZ)‖2F + λ‖Z‖1, (1)

where the index set Ω denotes the set of neighbors
that we wish to preserve, i.e., (i, j) ∈ Ω iff j ∈ Ni.
Ni denotes a set of nearest neighbors of i. We select
Ni = arg maxS,|S|≤α·n

∑
j∈S(yTi yj), which is the set

of α · n points with the largest inner products with
yi. |N | is always chosen large enough so that dis-
tances (inner products) to a few far away points are
also preserved while optimizing for our objective func-
tion. This prohibits non-neighboring points from en-



Sparse Local Embeddings for Extreme Multi-label Classification

100 200 300 400 500
0

0.5

1

Approximation Rank

A
pp

ro
xi

m
at

io
n 

E
rr

or

 

 

Global SVD
Local SVD
SLEEC NN Obj

0 1 2 3 4
x 10

5

1e0

1e1

1e2

1e3

1e4

1e5

Label ID

 A
ct

iv
e 

D
oc

um
en

ts

2 4 6 8 10

75

80

85

90

Number of Clusters

P
re

ci
si

on
@

1

 

 

Wiki10

SLEEC
LocalLEML

(a) (b) (c)
Figure 1. (a) error ‖Y − YL̂‖

2
F /‖Y ‖2F in approximating the label matrix Y . Global SVD denotes the error incurred by

computing the rank L̂ SVD of Y . Local SVD computes rank L̂ SVD of Y within each cluster. SLEEC NN objective
denotes SLEEC’s objective function. Global SVD incurs 90% error and the error is decreasing at most linearly as well.
(b) shows the number of documents in which each label is present for the WikiLSHTC data set. There are about 300K
labels which are present in < 5 documents lending it a ‘heavy tailed’ distribution. (c) shows Precision@1 accuracy of
SLEEC and localLEML on the Wiki-10 data set as we vary the number of clusters.

tering the immediate neighborhood of any given point.
PΩ : Rn×n → Rn×n is defined as:

(PΩ(Y TY ))ij =

{
〈yi,yj〉 , if (i, j) ∈ Ω,

0, otherwise.
(2)

Also, we add L1 regularization, ‖Z‖1 =
∑
i ‖zi‖1, to

the objective function to obtain sparse embeddings.
Sparse embeddings have three key advantages: a) they
reduce prediction time, b) reduce the size of the model,
and c) avoid overfitting. Now, given the embeddings

Z = [z1, . . . , zn] ∈ RL̂×n, we wish to learn a multi-
regression model to predict the embeddings Z using
the input features. That is, we require that Z ≈ V X

where V ∈ RL̂×d. Combining the two formulations
and adding an L2-regularization for V , we get:

min
V ∈RL̂×d

‖PΩ(Y TY )−PΩ(XTV TV X)‖2F

+ λ‖V ‖2F + µ‖V X‖1. (3)

Note that the above problem formulation is somewhat
similar to a few existing methods for non-linear dimen-
sionality reduction that also seek to preserve distances
to a few near neighbors (Weinberger & Saul, 2006).
However, in contrast to our approach, these methods
do not have a direct out of sample generalization, do
not scale well to large-scale data sets, and lack rigorous
generalization error bounds. Details of the algorithm
and generalization error analysis can be found in full
paper (Bhatia et al., 2015).

2.2. Scaling to Large-scale Data sets

For large-scale data sets, with millions of training
points, finding the neighborhood set Ω might become
computationally very expensive. Hence, to scale to
such large data sets, SLEEC clusters the given dat-
apoints into smaller local region. Several text-based

data sets indeed reveal that there exist small local re-
gions in the feature-space where the number of points
as well as the number of labels is reasonably small.
Hence, we can train our embedding method over such
local regions without significantly sacrificing overall
accuracy.

Owing to the curse-of-dimensionality, clustering turns
out to be quite unstable for data sets with large d
and in many cases leads to some drop in prediction
accuracy. To safeguard against such instability, we
use an ensemble of models generated using different
sets of clusters. We use different initialization points
in our clustering procedure to obtain different sets of
clusters.

3. Experiments

Experiments were carried out on some of the largest
XML benchmark data sets demonstrating that SLEEC
could achieve significantly higher prediction accuracies
as compared to the state-of-the-art. It is also demon-
strated that SLEEC could be faster at training and
prediction than leading embedding techniques such as
LEML.

Data sets: Experiments were carried out on multi-
label data sets including Ads1M (1M labels), Amazon
(670K labels), WikiLSHTC (320K labels), Delicious-
Large (200K labels) and Wiki10 (30K labels). All the
data sets are publically available except Ads1M which
is proprietary and is included here to test the scaling
capabilities of SLEEC.

Baseline algorithms: This paper’s primary focus
is on comparing SLEEC to state-of-the-art methods
which can scale to the large data sets such as embed-
ding based LEML (Yu et al., 2014) and tree based
FastXML (Prabhu & Varma, 2014) and LPSR (We-
ston et al., 2013).



Sparse Local Embeddings for Extreme Multi-label Classification

Evaluation Metrics: We evaluated algorithms using
metrics that have been widely adopted for XML and
ranking tasks. Precision at k (P@k) is one such metric
that counts the fraction of correct predictions in the
top k scoring labels in ŷ

Results: Table 1 compares SLEEC’s prediction accu-
racy, in terms of P@k (k= {1, 3, 5}), to all the lead-
ing methods that could be trained on five such data
sets. SLEEC could improve over the leading embed-
ding method, LEML, by as much as 35% and 15%
in terms of P@1 and P@5 on WikiLSHTC. Similarly,
SLEEC outperformed LEML by 27% and 22% in terms
of P@1 and P@5 on the Amazon data set which also
has many tail labels. The gains on the other data sets
are consistent, but smaller, as the tail label problem
is not so acute. SLEEC also outperforms the lead-
ing tree method, FastXML, by 6% in terms of both
P@1 and P@5 on WikiLSHTC and Wiki10 respec-
tively. This demonstrates the superiority of SLEEC’s
overall pipeline constructed using local distance pre-
serving embeddings followed by kNN classification.

SLEEC also has better scaling properties as compared
to all other embedding methods. In particular, apart
from LEML, no other embedding approach could scale
to the large data sets and, even LEML could not scale
to Ads1M with a million labels. In contrast, a sin-
gle SLEEC learner could be learnt on WikiLSHTC
in 4 hours on a single core and already gave ∼ 20%
improvement in P@1 over LEML. In fact, SLEEC’s
training time on WikiLSHTC was comparable to that
of tree based FastXML. FastXML trains 50 trees in
7 hours on a single core to achieve a P@1 of 49.37%
whereas SLEEC could achieve 49.98% by training 2
learners in 8 hours. Similarly, SLEEC’s training time
on Ads1M was 6 hours per learner on a single core.

SLEEC’s predictions could also be up to 300 times
faster than LEMLs. For instance, on WikiLSHTC,
SLEEC made predictions in 8 milliseconds per test
point as compared to LEML’s 279. SLEEC therefore
brings the prediction time of embedding methods to be
much closer to that of tree based methods (FastXML
took 0.5 milliseconds per test point on WikiLSHTC)
and within the acceptable limit of most real world ap-
plications.

Dual Submissions

This work was published in conference proceedings of
Neural Information Processing Systems 2015 (NIPS
2015), held in Montreal, Canada in Dec-2015. To read
the full version submitted to NIPS, click here.To visit
the conference website, click here.

Table 1. Precision Accuracies Our proposed method
SLEEC is as much as 35% more accurate in terms of P@1
and 22% in terms of P@5 than LEML, a leading embed-
ding method. SLEEC is also 6% more accurate (w.r.t. P@1
and P@5) than FastXML, a state-of-the-art tree method.
‘-’ indicates LEML could not be run with the standard
resources.

Data set SLEEC LEML FastXML LPSR-NB

Wiki10
P@1 85.54 73.50 82.56 72.71
P@3 73.59 62.38 66.67 58.51
P@5 63.10 54.30 56.70 49.40

Delicious-Large
P@1 47.03 40.30 42.81 18.59
P@3 41.67 37.76 38.76 15.43
P@5 38.88 36.66 36.34 14.07

WikiLSHTC
P@1 55.57 19.82 49.35 27.43
P@3 33.84 11.43 32.69 16.38
P@5 24.07 8.39 24.03 12.01

Amazon
P@1 35.05 8.13 33.36 28.65
P@3 31.25 6.83 29.30 24.88
P@5 28.56 6.03 26.12 22.37

Ads-1m
P@1 21.84 - 23.11 17.08
P@3 14.30 - 13.86 11.38
P@5 11.01 - 10.12 8.83

References

Agrawal, R., Gupta, A., Prabhu, Y., and Varma, M. Multi-
label learning with millions of labels: Recommending
advertiser bid phrases for web pages. In WWW, pp.
13–24, 2013.

Balasubramanian, K. and Lebanon, G. The landmark se-
lection method for multiple output prediction. In ICML,
2012.

Bhatia, K., Jain, H., Kar, P., Varma, M., and Jain, P.
Sparse local embeddings for extreme multi-label classi-
fication. In NIPS, 2015.

Bi, W. and Kwok, J.T.-Y. Efficient multi-label classifica-
tion with many labels. In ICML, 2013.

Cissé, M., Usunier, N., Artières, T., and Gallinari, P. Ro-
bust bloom filters for large multilabel classification tasks.
In NIPS, pp. 1851–1859, 2013.

Hsu, D., Kakade, S., Langford, J., and Zhang, T. Multi-
label prediction via compressed sensing. In NIPS, 2009.

Prabhu, Y. and Varma, M. FastXML: a fast, accurate and
stable tree-classifier for extreme multi-label learning. In
KDD, pp. 263–272, 2014. doi: 10.1145/2623330.2623651.

Tai, F. and Lin, H.-T. Multi-label classification with princi-
pal label space transformation. In Workshop proceedings
of learning from multi-label data, 2010.

Weinberger, K. Q. and Saul, L. K. An introduction to
nonlinear dimensionality reduction by maximum vari-
ance unfolding. In AAAI, pp. 1683–1686, 2006.

Weston, J., Makadia, A., and Yee, H. Label partitioning
for sublinear ranking. In ICML, 2013.

Yu, H.-F., Jain, P., Kar, P., and Dhillon, I. S. Large-scale
multi-label learning with missing labels. ICML, 2014.

Zhang, Y. and Schneider, J. G. Multi-label output codes
using canonical correlation analysis. In AISTATS, pp.
873–882, 2011.

https://papers.nips.cc/paper/5969-sparse-local-embeddings-for-extreme-multi-label-classification.pdf
https://nips.cc/Conferences/2015

	Introduction
	Method
	Learning Embeddings
	Scaling to Large-scale Data sets

	Experiments

