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Abstract

Heterogeneity of features and lack of corre-
spondence between data points of different
domains are the two primary challenges while
performing feature transfer. In this paper,
we present a novel supervised domain adap-
tation algorithm (SHDA-RF) that learns the
mapping between heterogeneous features of
different dimensions using random forests.
Our algorithm uses the shared label distri-
butions present across the domains as pivots
for learning a sparse feature transformation.
We conduct extensive experiments on three
diverse datasets of varying dimensions and
sparsity to verify the superiority of the pro-
posed approach over other baseline and state
of the art transfer approaches.

1. Introduction

Transfer learning algorithms help to overcome the
scarcity of labeled data in a domain (often referred to
as the target domain) by utilising information about
the task, and data from different but related, single or
multiple auxiliary domains (referred to as source do-
mains). For most transfer applications such as cross-
lingual sentiment analysis and cross-domain activity
recognition (Pan, 2010), the source and target data
are represented using heterogeneous features of differ-
ent dimensions. As the domains have heterogeneous
feature spaces, the goal is to discover a common space
or a mapping that bridges the domains.

The proposed algorithm yields a heterogeneous feature
space class-invariant mapping PS ∈ dS × dT by bridg-
ing the two domains using the common label space.
The generated mapping returns a target feature as a
linear combination of source features, assuming no cor-
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respondence between the data-points of the domains
that share no overlapping features.

1.1. Problem Definition

Let {XS , YS}mi=1 and {XT , YT }nj=1 represent the set of
labeled instances in the source S and target T domain
respectively, where m≫ n. xS ∈ RdS is a source data
point with yS ∈ Y the corresponding class label. Simi-
larly, xT ∈ RdT is a target data point and yT ∈ Y is its
associated label. The features that describe xS and xT
are completely different and dS 6= dT . However, we as-
sume that the source and target domains share a com-
mon label space. Let the number of shared labels be
k. Our goal is to learn a mapping f : RdS → RdT such
that the data from the source domain can be mapped
to the target domain. This mapped source data can
then be used in conjunction with the target data to
learn the hypothesis h : RdT → Y.

2. Related Work

A domain independent feature space remapping is the
focal point of heterogeneous domain adaptation. The
binding task at hand is to find a translator that re-
duces the differences between the domains in the com-
mon space. Based on how this common space is
determined, the transfer approaches can be broadly
split into two categories, namely, Feature Remapping
and Latent Space Transformation. Feature Remap-
ping strives to reduce the differences of the domains
by mapping the features of one domain to the other
i.e. g : XS → XT or g : XT → XS . The simplest
strategy entails greedily mapping the features across
the domains based on some fitness criterion (Feuz,
2014). Alternate approaches rely on domain indepen-
dent features known as pivots that can be utilised to
align the feature spaces. In the absence of explicit
domain independent features, statistical properties of
domain specific features can be used to derive meta
features to bridge the domains. A recent work on fea-
ture remapping for feature transfer constructs a class-
invariant sparse transformation matrix by mapping
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the weight vectors of SVM classifier trained on labeled
data from the domains (Zhou et al., 2014). Syntheti-
cally generated error correcting output codes (ECOC)
are used to train the SVM model so as to estimate
accurate transformations. Latent Space Transforma-
tion intends to discover a non-trivial common subspace
while trying to preserve certain characteristics of the
original feature spaces. Heterogeneous spectral map-
ping (HeMap) (Shi & Yu, 2012) optimises the differ-
ence in the latent space in a general setting by learning
two transformation matrices using spectral embedding
without using any label information. Often, in situa-
tions where there is no explicit data correspondences,
the recovered transformations are noisy. Since these
approaches directly estimate the projected data, esti-
mating the projection for out-of-sample data is a chal-
lenging problem.

3. Proposed Methodology

Given only a few labeled instances in the target we
leverage the common labels in the source and target
domains to derive the relationship between the corre-
sponding feature spaces.

3.1. Estimating Pivots Across the Domains

The first step in our proposed approach is to derive
the pivots that are used to construct the bridge across
heterogeneous feature spaces. We define the pivots in
terms of the shared labels between the source and tar-
get domains. In the simplest scenario each shared label
is a pivot. When the number of shared labels between
the domains is small, learning the feature mapping is
a challenging problem. Our approach overcomes this
limitation by relying on naturally occurring label dis-
tributions in the complex data space. To arrive at
these label distributions, our approach looks at the
leaf nodes of a decision tree modeled on the dataset.
A decision tree follows a greedy strategy to recursively
partition the data based on some feature value test.
Every leaf node is associated with a data partition that
follows a specific label distribution. Similar label dis-
tributions from the source and target are the pivots
that are used for bridging the two domains. To ensure
a sufficient number of pivotal label distributions for
learning the mapping between the domains, we train a
random forest, which also helps to reduce overfitting.

3.2. Estimating Feature Relationships

The key assumption of our algorithm is that features
in both source and target domains that characterise
data partitions with similar label distribution, must be
related to each other. One simple way to compute fea-

ture importance towards creating a data partition is to
give equal importance to all the features that were used
as split nodes along the path. Thus for a path, the ith

entry in the corresponding feature relationship vector
would contain the frequency of the ith feature getting
selected as a split node. Another approach would be
to give higher priority to a feature used at parent node
compared to the features chosen as split nodes at its
descendants. For every path, each entry in the feature
contribution vector is given by

∑c
i=1(1/2)v(i) where

v(i) denotes the decision tree depth at which the split
was made and c represents the frequency of the feature
being used as a candidate split in the path. In prac-
tice, it is common to have duplicate label distributions
at leaf nodes i.e. different data partitions correspond-
ing to the same label distribution. The feature contri-
bution vectors for these data partitions are averaged.
Based on the similar source and target class label dis-
tributions, the estimated feature contribution matrices
WS ∈ RNp×dS and WT ∈ RNp×dT are mapped to yield
the source projection matrix PS , where Np is the num-
ber of pivots.

3.3. Deriving the Feature Transformation

Our objective is to represent each target feature as a
linear combination of a small set of source features.
The Least Absolute Shrinkage and Selection Operator
(LASSO) is used to learn PS from WS and WT . It is
defined as:

min
PS

1

Np

Np∑
i=1

‖WT −WSPS ‖22 +

dT∑
i

λi ‖ PSi
‖1,

s.t. PSi
≥ 0

The first part of the optimisation problem minimises
the difference between the projected source feature
contribution matrix PS ×WS and target feature con-
tribution matrix WT . The second part is the L1 regu-
larisation term to obtain a sparse transformation ma-
trix. The regularisation parameter λ controls the size
of this subset. There are dT minimisation problems
that are solved using Least Angle Regression. Once
the mapping PS ∈ RdS×dT is obtained, the target
model is retrained along with the projected source data
(S×PS). The SHFR-ECOC approach does not retrain
the model after finding the transformation. It uses the
source model to predict the class labels of transformed
target instances. In contrast, our approach utilizes
the benefits of randomization and implicit feature se-
lection of RF to retrain the model attuned for target
domain.
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Table 1. Performance comparison is depicted in terms of mean error(%). Statistically significant SHDA-RF results against
BRF and SHFR-RF are highlighted in bold and indicated by ∗ respectively.

CASAS HH datasets
Baseline Results Transfer Results

S→T BRF SVM-ECOC SHFR-ECOC HeMap-L HeMap-NL SHFR-RF SHDA-RF
hh102→hh118 28.6±1.07 57.74±1.84 43.52±1.18 59.6±0.89 61.8±0.87 27.89±0.95 26.97±1.15*
hh113→hh118 21.6±0.45 54.97±1.13 36.7±1.41 58.4±1.26 63±1.39 19.47±1.07 18.38±1.29*
hh118→hh102 29.6±1.86 39.99±1.59 39.28±1.88 43±0.99 45.7±0.9 29.54±1.88 27.83±2.64*

20 Newsgroups dataset
Baseline results Transfer Results

S → T BRF SVM-ECOC SHFR-ECOC HeMap-L HeMap-NL SHFR-RF SHDA-RF
rec v/s sci

F1:F5000→F5001:F10000 51.91±2.3 50.49±4.1 48.01±3.5 63.6±3.62 63.22±4.1 46.61±1.36 40.06±2.9*
F5001:F10000→F1:F5000 68.41±3.6 67.09±4.0 60.23±6.6 73.1±3.9 72.8±4.6 58.12±2.13 56.81±4.1*

rec v/s talk
F1:F5000→F5001:F10000 55.79±1.1 56.12±1.6 51.55±2.5 66.2±3.9 66.0±3.55 49.99±0.12 48.82±3.3*
F5001:F10000→F1:F5000 68.63±2.4 66.16±3.8 52.92±3.1 70.44±3.0 70.2± 6.11 44.67±0.23 35.51±5.2*

Amazon CLS dataset
S→T BRF SVM-ECOC SHFR-ECOC HeMap-L HeMap-NL SHFR-RF SHDA-RF

English→French 44.46±2.73 52.23±3.64 39.01±2.54 56.69±4.24 55.35±4.35 38.85±3.51 36.66±3.38*
English→German 45.43±2.92 51.36±3.92 38.33±3.18 57.76±3.1 57.32±3.71 37.62±2.31 33.29±4.12*
English→Japanese 49.2±3.28 53.28±4.69 39.84±2.63 59.99±4.55 59.89±4.47 38.22±3.59 34.87±4.93*

4. Experiments

We compare the performance of the proposed algo-
rithm against other baseline classifiers and approaches
that perform transfer. Random forests (BRF) and
SVM that uses ECOC (SVM ECOC) were chosen as
the baseline classifiers. Transfer approaches include
SHFR ECOC (Zhou et al., 2014) and HeMAP (linear
(L) and non-linear (NL)) (Shi & Yu, 2012). The hyper-
parameters associated with random forest (Breiman,
2001) were set using cross-validation experiments. The
parameters for the SVM model with RBF kernel were
fine-tuned using grid search. Based on cross valida-
tion experiments, the length of ECOC was set to 35,
beyond which the performance plateaued. We choose
three diverse datasets, varying in the size and spar-
sity of the features, for investigating the performance
of the different algorithms. The CASAS dataset
(Cook & Krishnan, 2015) is a collection of smart home
datasets that are widely used for investigating activ-
ity recognition algorithms. We use the horizon house
(HH) datasets from this collection, which are records
of sensor data from single resident smart homes. Sen-
sor data from one smart home serves as the source
and another acts as the target. A sliding window of 20
sensor events is used to build the feature vector that
consists of counts of sensor events within the sliding
window, along with temporal features such as time of
the day and day of the week. The feature vector is an-
notated with the activity label associated with the last
sensor event in the sliding window. The feature values
of the sensors in close vicinity appear to be mutually
related. This motivates learning a sparse feature map-
ping instead of a dense mapping. The target training
set consists of approximately 7000 samples that pre-
serve the original class distribution. 16 such random

subsets are used for evaluating the performance of the
different algorithms. The 20 Newsgroups (Lichman,
2013) text collection is a sparse dataset of approxi-
mately 19000 documents belonging to 20 classes that
follow a label hierarchy. The transfer experiments were
performed on two datasets each containing the subcat-
egories falling under rec and talk, and rec and sci
respectively. There are a total of 8 classes in each
dataset with a vocabulary spanning over 26000 words.
We considered only the first 10000 features that con-
tributed the most towards the classification task. For
each dataset, two transfer settings were created. In
the first setting, the source and target consisted of ran-
dom and mutually exclusive partition of 5000 features.
Target training data is created by randomly selecting
10 samples per class. In the second setting, the roles
of the source and target dataset were reversed. The
predefined test partitions of the dataset are used for
testing the approaches. The Amazon Cross Lingual
Sentiment (CLS) dataset (Lichman, 2013) consists
of product reviews written in English, French, German
and Japanese for three different product categories,
namely, books, music and dvds. The English language
reviews act as the Source domain and the reviews writ-
ten in the other languages are treated as the target
domain. To handle high dimensional features, PCA
was performed while preserving 75% variance on the
TF-IDF feature values. The target domain was con-
structed with 10 instances per class and the remain-
ing instances were used for testing the performance of
model.
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5. Results and Discussion

The performance of different classifiers on the datasets
is reported in Table 1. The superior performance of
baseline random forest (BRF) model was one of the
motivations behind adopting random forest model for
performing transfer. The performance of the SHDA-
RF algorithm on the CASAS-HH dataset is signifi-
cantly better than all the other approaches by about
2-3%(p-value< 0.05). Among the baseline classifiers,
it is evident that the BRF models perform better than
SVM ECOC. This can be explained by considering
that the activity labels in the dataset are annotated
by humans using rule based heuristics. It can be also
noted that SHFR ECOC, a transfer strategy based on
SVM ECOC, performs better than SVM ECOC signif-
icantly. This suggests that the possibility of knowledge
transfer between the two domains, which is further re-
inforced by the performance improvement obtained by
SHDA-RF over BRF model. On the high dimensional
20 Newsgroups dataset, SHDA-RF results in superior
performance as compared to all the other approaches.
Handling high dimensional sparse data with only a
few samples available per class necessitated the use of
dimensionality reduction techniques for SVM ECOC
and SHFR ECOC approaches. However, the proposed
approach does not require such a pre-processing step
and is able to learn well in the original high dimen-
sional space. The HeMAP approaches attempt to esti-
mate a direct mapping between the source and target
data. It was observed that even with explicit corre-
spondence between the data points, the performance
of the unsupervised transfer approaches are not at par
with the other techniques. Even on the the Amazon
CLS dataset, SHDA-RF performs significantly better
than all the baseline and transfer approaches.

To compare different transfer mappings, random for-
est was used as the final model. The results suggest
that the transfer mapping learned through SHDA-RF
is better than all the transfer approaches under con-
sideration. It was also observed that with increase
in availability of labeled target data, the mean er-
ror reduces by learning a better mapping. However,
the transfer approach performs marginally better than
the baseline when number of target training examples
is close to 50%. The SHDA-RF algorithm uses only
identical label distributions across the domains as piv-
ots. We conducted experiments to study the effect of
increasing the shared label distributions between the
domains by relaxing the similarity between the distri-
butions. We used Jensen-Shannon divergence to de-
termine the similarity between two label distributions.
It was observed that the mean error reduces only till
about 90% relaxation beyond which the error increases

marginally.

6. Summary

In this paper we present a novel supervised hetero-
geneous domain adaptation technique that learns the
mapping between heterogeneous feature spaces of dif-
ferent dimensions. Our algorithm uses the shared la-
bel distributions across the domains as the pivots for
learning the feature transformation. We estimate the
pivots using random forest models trained both on
source and a small part of target labeled data. The
experiments conducted on diverse datasets suggest the
superiority of the proposed algorithm over other base-
line and feature transfer approaches.
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