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Abstract
We present a novel offline variance change point
detection algorithm based on dynamic mode de-
composition (DMD). The developed algorithm
dynamic mode decomposition based variance
change point detection (DVCPD) is completely
data driven, doesn’t require any knowledge of un-
derlying governing equation or any probabilistic
model assumption for time series. It uses a lo-
cal adaptable window and sequential hypothe-
sis testing to iteratively detect variance change
points, where window’s location and its size is
automatically governed by acceptance and rejec-
tion of hypothesis. The DVCPD algorithm has
been demonstrated to work robustly on different
time series data sets and detects multiple vari-
ance change points accurately.

1. Introduction

Change point detection involves discovery of the points
at which the stochastic behavior of a time series
changes. Variance change point is an abrupt change
in variance before and after the change point. When
multiple variance change points arise, they could struc-
turally break the time series. When a time series is
structurally broken, one couldn’t apply a reasonable
modelling assumption with good accuracy. We con-
sider the problem of iteratively detecting and handling
variance change in sequential data. Given a fixed sam-
ple size of a sequential data, detecting all its variance
change points accurately is a challenging problem and
has important applications in many areas such as stock
price (Tsay, 1988), oil & gas (Marti et al., 2015), eco-
nomics, business analytics, and others. In sequential
data from call centers, change points arise either due
to known business calender like Thanksgiving, Christ-
mas, and New Year or external events like movement
in economy, merging and splitting of businesses. For
example, estimating a change point and its impact due
to an announcement of new iPhone in the market by
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Apple is a very difficult problem, and its inaccurate
estimation generally costs hundreds of million of dol-
lars. In these application areas, it is always desirable
to search for the causes and sources of change points,
so that such change point behavior can be properly an-
alyzed and better understood; and if desired post de-
tection prescriptive recommendation could be taken.
Therefore, the task of finding change points has been
the focus of considerable research in sequential data
analysis.

We present a novel and efficient algorithm for variance
change point detection called dynamic mode decompo-
sition based variance change point detection (DVCPD)
which uses a DMD based data-driven dynamical sys-
tem (Schmid, 2011), local adaptable window, and se-
quential hypothesis testing to iteratively detect vari-
ance change point. (a) The location and size of the
window is automatically governed by the acceptance
and rejection of the hypothesis. Thus, the variance
change is detected locally as well as globally unlike
the well-known methods (Tsay, 1988) or (Inclán &
Tiao, 1994) where the variance change is detected on
the whole dataset.(b) DVCPD normalized data in a
suitable way so that the presence of other variance
changes, that might have been hidden due to mask-
ing, could be accurately detected. (c) Using real-world
univariate datasets we demonstrate superior accuracy
as compared to well-known prior-art.

2. Dynamic Mode Decomposition
(DMD)

DMD is a data-driven dynamical system (Schmid,
2011) that works by extracting information from a
sequence of data. It computes a linear map of a se-
quential data generated from a nonlinear process (in
a least- squares sense), that describes the evolution of
the dynamics over a small time interval. The eigenval-
ues and eigenvectors of this map capture the principal
dynamics of the time snapshots. We briefly review
DMD algorithm (Grosek & Kutz, 2014) in the follow-
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ing Section.

2.1. DMD Algorithm

Let xt ∈ RJ be data points collected at time t =
1, 2, ..., T . The data can be grouped into matrices as
follows: X = [x1 x2 ... xT−1], Y = [x2 x3 ... xT ]. The
Koopman operator A maps the data at time t to time
t + 1 such that xt+1 = Axt. The DMD algorithm es-
timates the Koopman operator A that best represents
the data in X such that the columns of:

X = [x1 Ax1 A
2x1 ... A

T−2x1],

form a Krylov space generated by x1 and the matrix A.
Thus, AX = Y . The last data point xT is determined
by xT =

∑T−1
t=1 ktxt + ε, where k′ts are the coefficients

of the Krylov space basis vectors and ε is the residual
error. Notice that Y = XS + ε.eTT−1, where eT−1 is

the (T −1)th unit vector and S is a (T −1)×J matrix
whose subdiagonal entries are 1 and the last column is
kt, t ∈ [1..T − 1].

Let the SVD of X be UΣV T , where U ∈ RJ×r, V ∈
R(T−1)×r have orthonormal columns, and Σ ∈ Rr×r
is diagonal. The parameter r is chosen to capture
the fundamental structure and dynamics of the sys-
tem represented by the data in X. Given ε is small
one can estimate (Grosek & Kutz, 2014):

Y ≈ XS ≈ UΣV TS

S ≈ V Σ−1UTY.

Using the similarity transform V Σ−1, the matrix S̃ ≈
UTY V Σ−1 can be derived, which is similar to the ma-
trix S. Since, AX = Y ≈ XS, some of the eigen-
values of the matrix S approximate the eigenvalues of
the Koopman operator A. Also, AU ≈ US̃ and the
eigenvectors of matrix S̃ approximate those of A. The
complete algorithm is given below, in Algorithm 1.

Algorithm 1 DMD Algorithm

1: procedure DMD(data = (x1, x2, ..., xT ))
2: Arrange data into matrices X,Y
3: X = [x1|x2|...|xT−1] and Y = [x2|x3|...|xT ]
4: Compute (reduced) SVD of X, X = UΣV T

5: Define matrix, Ã , UTY V Σ−1

6: Compute eigenpairs of Ã, writing Ãw = λw.
7: Each λ 6= 0 is a DMD eigenvalue
8: DMD λ - mode is : ϕ = 1

λY V Σ−1w
9: end procedure

3. DVCPD Algorithm

We designed the variance change point detection algo-
rithm so that it can accurately detect local and global

change points in the given time series. For this, we
consider varying window sizes. Varying window sizes
are supposed to describe the local state of the under-
lying process. We start with smaller window sizes to
detect true change point locally and then increase the
window size up to a significant proportion of the whole
time series so we can detect change points globally.
We show that our algorithm accurately detects the
variance change points as compared to typical algo-
rithms (Tsay, 1988) (Inclán & Tiao, 1994).

3.1. Model Construction:

We fit DMD model on the given time series,
{x1, . . . , xT }, using Algorithm 1. (In general, we could
also use other models as well such as: (a) the best
possible ARIMA(p, d, q) model and estimate the ex-
act shocks a = {a1, a2, . . . , aT } using maximum like-
lihood method (Box et al., 2008), or (b) State space
model with a represented as estimated smoothed ob-
servation disturbance (Durbin & Koopman, 2012).
We use the method of cumulative sum of squares
((Inclán and Tiao, 1994) (Inclán & Tiao, 1994)) on
the shock {a1, a2, . . . , aT }, starting with α = α0, to
detect the potential variance change point k. After
determining the value of k we split the time series ob-
servation into two subsections {x1, x2, . . . , xk−1} and
{xk, x2, . . . , x[αT ]} and apply the Wald test statistics

W ∗ to decided if the kth point is a true variance change
point or not. If the kth is a variance change point,
we move our window to the next section of data or
otherwise increase the starting size of the window by
[αT ] and check for the potential change point and
the true variance change point again. If two variance
change points detected are within 10 data points of
each other we choose the one which has smaller P-
value. We iterate the algorithm for different values of
α till α = αmax.

3.2. Iterations with Adaptable Window Sizes:

This section describes the procedure AdaptWin. We
consider a subsection of the data by constructing a
starting window of size [αT ] in each iteration, where
α ∈ P = {α0, α0 +β, α0 + 2β . . . , αmax}, and [x] is the
largest integer smaller than equal to x, and we search
for the variance change point in this window.

3.3. Change Points Selection:

Let mi be the number of variance change points de-
tected when Algorithm 2 was started by taking α =
α0+β(i−1), i = 1, 2, . . . , γ, where, γ = (αmax−α0

β +1).
The number of variance change points present in the
data is defined as m = mode of m1,m2, . . . ,mγ . Since
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Algorithm 2 DVCPD: Variance change point

1: while no variance change is detected do
2: DMD model construction (Algorithm 1)
3: residual ← DMD Model
4: procedure AdaptWin(data, residual)
5: for α = α0, (α0 + 2 ∗ β),..., αmax do
6: while All data is read do
7: Select window(start, size)
8: Find Impact point(window) k
9: Wald test(window, k)

10: if rejected then variance CP
11: move window to next section
12: else Increase window size by [αT ]
13: end if
14: end while
15: end for
16: Determine split points and base model
17: end procedure
18: Time series←Normalization
19: end while

we are applying our algorithm for each α from α0 to
αmax, the variance change points that were detected
for some value α = α0 should also be detected for other
values of α which are close to α0 if it has a significantly
large impact factor. Then we determine those variance
change points that are occurring in most of the itera-
tions and take top m of those variance change points.

3.4. Base Model Selection & Normalization:

The main purpose of normalization is to remove the
effect of already detected variance change point and re-
run the above proposed algorithm on the updated data
to capture new variance change points which could
have been present in the data but remained hidden
due to the effect of an already detected variance change
point which has a very large impact factor.

Let us assume the process in the subsection i
has the largest number of data points and i ∈
{2, 3, . . . ,m}. Let vb be the variance of the process
{xki−1

, xki−1+1, . . . , xki−1} in subsection i. Let vl be
the variance of the process in the subsection i−1 with
data points {xki−2 , xki−2+1, . . . , xki−1−1} and let Let
vr be the variance of the process in the subsection
i+ 1 with data points {xki , xki+1, . . . , xki+1−1}. Then
the updated normalized new process is

x∗t =

[
x̄+

√
vb
vl

(xt − x̄)

]
1(1≤t<ki−1) + xt1(ki−1≤t<ki)

+

[
x̄+

√
vb
vr

(xt − x̄)

]
1(ki≤t≤T ), t = 1, 2, . . . T

where, x̄ is the average of all T data points in the orig-

inal data set. Observe that due to this normalization
variances in subsection i−1, i and i+1 of that updated
data {x∗1, x∗2, . . . , x∗T } are all same and in particular the
variance is equal to vb.

4. Experimental Results & Analysis

In this section, we present the experimental results on
variance change point detection of univariate data on
(a) IBM stock price (b) Nile data, (c) Average
handling time.

4.1. IBM stock price

The data set considered here is the first difference of
the IBM stock closing price from May 17, 1961 to
November 2, 1962 as reported by (Box et al., 2008).
They have identified an ARIMA(0, 1, 1) as the best
model for this series, however they found that some
evidence of possibility of inadequacy of the ARIMA(0,
1, 1) might be in part by change in variance. There-
fore, this data set is extensively studied by various
authors to illustrate their theory of variance change
(Inclán and Tiao, 1994) (Inclán & Tiao, 1994), (Tsay,
1988) (Tsay, 1988).
Change Points Detected: The change points de-
tected using DVCPD, Algorithm 2, are shown in Fig-
ure 1. Data points - 236, 279 are found to be the
variance change points in the first iteration. Since the
largest section on which variance remained stable is
from data point 1 to data point 235, this section is
taken as the base model. With respect to the base
model the difference data is normalized to get the up-
dated data. The plot of the normalized data is shown
in each subplot of the Figure 1. The algorithm is then
applied on the updated data, and 279th point is found
as the variance change point. And finally, on the re-
normalized data the algorithm detected 180th as the
variance change point.

4.2. Nile data

We consider the classic example of change point data
set, the minimum water levels of the Nile river during
the AD 622-1284, measured at the island of Roda, near
Cairo, Egypt. Several authors have reported evidence
supporting a change point in this data around the year
AD 722 (Ray and Tsay, 2002).
Change Points Detected: Table 1 presents the
results from multiple iterations of DVCPD and the
corresponding change points detected on Nile data.
DVCPD detects 720 and 805 points as the variance
change points. A change point, which is a variance
change point around AD 722, agrees with the previous
result which uses sequential Bayesian one step ahead
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Figure 1. Difference data of IBM stock price: plots show
variance change points as thick vertical lines and normal-
ized series in each of the three iteration.

Table 1. Variance change points from Nile and AHT data

Dataset Variance change points
Nile 720, 805
Average handling time 56, 276, 355, 786, 983

prediction in the presence of change points (Saatci
et al., 2010).

4.3. Average handling time

As a final example, we consider the time series of aver-
age handling time (AHT) of an agent from 01-08-2009
to 09-30-2012 of a call center. AHT is the average time
taken by an agent to answer a call from a customer.
It is important to determine the time instances when
the variance changes occur in AHT. If the variation in
AHT increases consistently from the previously seen
pattern, that means agents are taking more time to an-
swer calls, and also within the same time period some
other calls are answered in relatively small time. For
some calls AHT is so high, it may lead to large number
of calls in a queue and more often than not important
calls may get dropped without being answered. Hence
when the variation within AHT is large, it is important
to have enough number of agents deployed to answer
all the calls. Only after the variance change points
are detected in a time series, one can schedule enough
agents to answer calls within the specified time.
Change Points Detected: Results of multiple vari-
ance change point detection, using DVCPD, are shown
in the Table 1. In the first iteration, the variance
change points obtained are: 56, 276 and 786. In the
next iteration the new change points obtained are: 355
and 983.

5. Conclusions

We proposed the DVCPD algorithm which accurately
captures the variance change locally and globally and
uses normalization to capture hidden change points.
By using DMD, it provides model-free approach that
makes it flexible while still being accurate. On mul-
tiple univariate data sets, empirical results show the
efficacy of the DVCPD algorithm. It detects variance
change points that are similar or better than prior ap-
proaches (Tsay, 1988) (Inclán & Tiao, 1994) and owing
to DMD provides superior performance over ARIMA
and State Space.
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