Incremental Shared Nearest Neighbor Density-Based Clustering
Algorithms for Dynamic Datasets

Panthadeep Bhattacharjee
Amit Awekar

Indian Institute of Technology, Guwahati, Assam, India

Abstract

Dynamic datasets undergo frequent changes
where small number of data points are added
and deleted. Such dynamic datasets are fre-
quently encountered in many real world ap-
plications such as search engines and recom-
mender systems. Incremental data mining al-
gorithms process these updates to datasets
efficiently to avoid redundant computation.
Shared nearest neighbor density based clus-
tering (SNN-DBSCAN) is a widely used
clustering algorithm, mainly for its robust-
ness. Existing incremental extension to SNN-
DBSCAN cannot handle deletions to dataset
and handles insertions only point by point.
We overcome both these bottlenecks by effi-
ciently identifying affected parts of clusters
while processing updates to dataset in batch
mode. We present three different incremen-
tal algorithms with varying efficiency at elim-
ination of redundant computation. We show
effectiveness of our algorithms by perform-
ing experiments on large synthetic as well as
real world datasets. Our algorithms are up
to 2 Orders of Magnitude faster than non-
incremental algorithm and up-to 50 times
faster than existing incremental algorithm
while guaranteeing exact same output.

1. Introduction

Many popular clustering algorithms work on static
snapshot of dataset. However, many real-world ap-
plications such as search engines and recommender
systems are expected to work over dynamic datasets.
Such datasets undergo frequent changes where some
data points are added and some data points are
deleted. With any change in dataset, the clustering
output might change. A naive method to get exact
clustering over the changed dataset is to run the clus-

PANTHADEEP.EDUQGMAIL.COM
AWEKARQIITG.ERNET.IN

tering algorithm again. However, if the changes in
dataset are minor, then change in output is also ex-
pected to be small. These changes cannot be ignored
as they might be significant for the datapoints and
their neighborhood.

Most of the computation in reclustering is going to be
redudant. This problem becomes more severe with in-
crease in frequency of updates to dynamic datasets.
For large datasets, rerun of the algorithm might not
finish before next batch of updates arrive. Incremen-
tal algorithms target this fundamental issue of redun-
dant computation yet obtain identical output to non-
incremental counterpart.

SNN-DBSCAN is a widely used clustering algorithm
for its robustness while finding clusters of vary-
ing densities and shapes even in high dimensional
data(Ertoz et al., 2003). Existing incremental exten-
sion to SNN-DBSCAN cannot handle deletions from
the dataset and it handles insertions only one point
at a time(Singh & Awekar, 2013). We present three
algorithms that overcome both these problems with
varying efficiency at elimination of redundant compu-
tation.

2. Preliminaries and problem
definitions

Incremental Clustering:Given a data set D along-
with its initial clustering f : D — C where C C D and
an insertion or deletion sequence of B batches with
n’ points per batch. After k < nB updates(inserts or
deletes), such that k exactly divides nB and let D' be
the new data set, then an incremental clustering is de-
fined as a mapping h : f, D' — C', where C' C D/
is isomorphic to the one time clustering f(D') by the
non-incremental algorithm.

Similarity value: For two points p and ¢ It is defined
by the following equation:

similarity(p,q) = KNN(p)NKNN(q) (1)

Incremental Shared Nearest Neighbor Density-Based Clustering Algorithms for Dynamic Datasets

Core, non-core and noise points: In SNN
graph (Ertoz et al., 2003), if the number of strong
links associated with a point exceeds a certain thresh-
old, then the point is a core point, otherwise it is a
non-core point. All the non-core points which do not
share a link with any of the core points are called as
noise points.

3. Proposed algorithms

Incremental algorithms for addition:We propose
three incremental algorithms for addition: Batch-Inc1,
Batch-Inc2 and Batch-Inc3. In Batch-Inc1, the KNN
list of the data points are computed incrementally.
Amongst the existing points, the KNN list of only
those points are updated which accomodates any of
the new points in their updated KNN list. This type
of points are categorized as Type 1 points. The entry
of one or more of the new points in the updated KNN
list of Type 1 points displaces some of the existing
points from its KNN list. The rest of the points
remain unaffected and retain their previous KNN
list. The new similarity matrix(Ertéz et al., 2003) is
constructed by finding the similarity values between
every point p € D' and each point ¢ € updated
KNN list of p. Only the similarity values which are
greater than or equal to a threshold value (snn) are
accepted, given that p and ¢ lie in each others’ KNN
lists. The number of non-empty cells in each row of
the similarity matrix corresponds to the number of
strong links for a point. All points p € D' that have
the number of associated strong links greater than
another threshold (density) qualify as core points. If
two core points are connected by an edge in the SNN
graph (Jarvis & Patrick, 1973), then they are placed
in the same cluster. A non-core point is assigned to
that cluster, which its nearest core point is a part of.
The nearest point is decided by the strength of the
shared link. If p, r are core points and ¢ is a non-core
point such that similarity(q,r) > similarity(q,p), then
q is assigned to that cluster which contains r.

Batch-Inc2 computes both the KNN list and
similarity matrix incrementally. For constructing
similarity matrix, firstly every new point p € D/
computes its similarity value with each point ¢ € I/,
such that ¢ lies in p’s KNN list. If similarity(p,q)
> snn, and p and ¢ lie in each others KNN list, a
shared link between them is formed. Next compute
the similarity values of each of the Type 1 points from
their respective updated KNN lists. The updated
similarity values of the Type 1 points may differ from

corresponding values in the old similarity matrix.
This is because the insertion of new data point(s) in
the updated KNN list of each of the Type I points
forces one or more existing points to move out of
the new KNN list. Only those points which are at
a distance lesser than or equal to the K'* nearest
distance from the affected Type 1 point retain their
place. This results in removal of any link between the
Type 1 point and its previously existing neighbors.
The removed non-Type 1 data points are labelled as
Type 2 affected points. Amongst the points which
retain their place in the updated KNN list, all the
non-Type 1 points are also labelled as Type 2 points.
Next, compute the similarity values of each of the
Type 2 points. Although the KNN list of the Type
2 points remain unaffected, these points may change
their cluster membership due to possible presence
of Type 1 point(s) in their KNN list. The points
which are niether Type I nor Type 2 retain their
existing similarity values. The algorithm follows with
the subsequent creation of core points and cluster
formation similar to Batch-Incl.

Batch-Inc3 computes all the properties: KNN
list, similarity values and core/non-core property
incrementally. The KNN lists and similarity matrix
are computed similar to Batch-Incl and Batch-Inc2.
In Batch-Inc3, the Type 1 and the Type 2 affected
points are categorized into core or non-core points
based on the state of updated similarity matrix.
The unaffected points retain their previous core or
non-core property. The updated KNN list, similarity
matrix, core and non-core points are used to find
clusters incrementally for the next batch of incoming
points.

Incremental algorithms for deletion: For dele-
tion of data, we present three incremental clustering
algorithms: Batch-Decl, Batch-Dec2 and Batch-Dec3.
Although this class of algorithms compute the KNN
list, similarity matrix and core point labelling incre-
mentally, the computation method is fundamentally
different from the incremental addition algorithms.

Batch-Decl computes the KNN list of the data points
incrementally. Removal of points directly affects the
KNN list of some of the existing data points. The ex-
isting KNN list of such affected points may contain one
or more of the deleted points. Such points are catego-
rized as Type 1 points. The deleted points are removed
from the KNN list of the Type 1 affected points. As
a result the size of the nearest neighbor list shrinks.
However, the algorithm priorly maintains an extended
KNN list for each data point with an additional space
for (w-1)*K points where w € N. The points in the

Incremental Shared Nearest Neighbor Density-Based Clustering Algorithms for Dynamic Datasets

extended KNN list are placed in order of their increas-
ing distance from the affected Type 1 point. If d < K
points are removed from the existing KNN list within
the boundary of K nearest points, then an additional
d number of points shift that many places to form the
updated KNN list. The formation of similarity ma-
trix, core and non-core points and clusters are similar
to Batch-Incl of the addition algorithms.

Batch-Dec2 computes both the KNN list and similar-
ity matrix incrementally. For constructing similarity
matrix, firstly for every Type 1 point p € IV, the al-
gorithm computes its similarity value with point ¢ €
D', such that ¢ lies in the extended KNN list of p
and ¢ can at most be the K" nearest point from p.
The updated similarity values of the Type I points
may differ from corresponding values in the existing
similarity matrix. This is because the deletion of data
point(s) from the updated KNN list of each of the Type
1 points forces one or more of the existing points from
the extended (w-1)*K space to enter within the dis-
tance of K nearest point from the respective Type 1
point. The new points which enter the space within
boundary of K** nearest point from the Type 1 point
are labelled as Type 2 points given that these points
are non-Type 1 points. As a result, a possible Type
1-Type 2 link formation may take place. All the non-
Type 1 points which retain their place in the updated
KNN list of the Type 1 points, are also labelled as
Type 2 points. The shared link strength between such
Type 2 points and the Type I point might increase
with newly entered points becoming the contributory
factor. Next, compute the similarity values of each of
the Type 2 points. Although the KNN list of the Type
2 points remain unaffected, these points may change
their cluster membership due to possible presence of
Type 1 point(s) in their KNN list.

Batch-Dec8 computes all the properties: KNN list,
similarity values and core/non-core property incre-
mentally. The KNN lists and similarity matrix are
computed similar to Batch-Decl and Batch-Dec2. In
Batch-Dec3, the Type 1 and the Type 2 affected points
are categorized into core or non-core points based on
the state of updated similarity matrix. The unaffected
points retain their previous core or non-core property.

4. Experimental results

First, we illustrate the superiority of our incremental
algorithms over the non-incremental SNN-DBSCAN
algorithm (Ertoz et al., 2003) across the three datasets:
Mopsi2012 location based search engine, 5D synthetic
dataset, Birch3 dataset. For the sake of our experi-
ments, we define a new term called algorithm compo-

nents. It consists of base dataset, KNN list, similar-
tity matrix, core, non-core points and clusters based
on the base dataset. In tables 1 and 2 we highlight
the comparisons of our incremental algorithms with
non-incremental SNN-DBSCAN for both addition and
deletion of points.

Comparisons with pointwise insertion based in-
cremental IncSNN-DBSCAN:

For comparing our algorithms with the IncSNN-
DBSCAN algorithm, we performed experiments on
Mopsi2012 and Birch3 dataset.

Mopsi2012: The initial parameters of the three in-
cremental addition algorithms taken were: knn:10,
snn:3, density:4. We inserted 3000 points upon the
base dataset of 10000 points in multiple batches.
The minimum number of added points/batch were 2,
and we carried on the experiments till we added 50
points/batch. For a batch containing 2 points we
ran each of the three algorithms independently 1500
times to insert 3000 points. The final set of clus-
ters that were produced after 1500 batches were iden-
tical to the IncSNN-DBSCAN. For deletion, the al-
gorithm parameters remain the same and w is cho-
sen as 2. We set the algorithm components values
by performing SNN-DBSCAN over 13000 points and
then deleted 3000 points in multiple batches incremen-
tally. Similar to addition, we started with a min-
imum of 2 points/batch to be deleted, and carried
on the experiments upto 20 points/batch. Batch-
Inc3 achieved the highest speedup of 50 times and
is about 98% faster than IncSNN-DBSCAN when 50
points/batch were inserted. Out of the three dele-
tion algorithms Batch-Dec3 was the most efficient .
Batch-Dec3 was about 81.77% speedier than its point-
wise measure when it performed point wise deletion re-
moving upto 20 points/batch. A maximum of around
0.30% of Typel and about 0.69% of Type 2 affected
points were identified while processing batch number
1229 and 898.

Batch number vs Typel affected points %

0.35 T
Type 1 affected points %

i 'n W i M iy

400 600 800 1000 1200 1400 1600
Batch number vs Type2 affected points %
Type 2 affected points %

200 800 1000 1200 1400 1600

00000000
oRMWrO~N®

o

Figure 1. Type 1 and Type 2 affected points during addition for
1500 batches for Mopsi2012.

Incremental Shared Nearest Neighbor Density-Based Clustering Algorithms for Dynamic Datasets

Table 1. Performance comparsion with SNN-DBSCAN for addition of data

Dataset Size Base dataset size Added SNN-DBSCAN(sec) Batch-Inc1 Speedup % Batch-Inc2 Speedup % Batch-Inc3 Speedup %
Mopsi2012 13000 10000 3000 128.95 77.52 78.06 78.94
5D points set 100000 80000 20000 7405.87 82.71 83.01 83.67
Birch3 100000 80000 20000 5876.93 82.39 82.83 83
Table 2. Performance comparsion with SNN-DBSCAN for deletion of data
Dataset Base dataset size Deleted Remaining SNN-DBSCAN(sec) Batch-Decl Speedup % Batch-Dec2 Speedup % Batch-Dec8 Speedup %
Mopsi2012 13000 3000 10000 81.19 29.65 30.27 31.02
5D points set 100000 20000 80000 4702.32 63.42 63.76 63.99
Birch3 100000 10000 90000 4874.74 99.52 99.54 99.55
Batch number vs Typel affected points % Batch number vs Typel affected points %
038 Type 1 affected points % ——— §E§§ ‘ " Type'1 affected points %'
035 098 [i

[
o

L A

Rl

Batch number vs Type?2 affected points %

1
5
0
0 200

1200 1400

fype 2 affecle«‘:i points %

O0000000
oRrhvwhUON®

0 200 400 600 800 1000 1200 1400

Figure 2. Type 1 and Type 2 affected points during deletion for
1500 batches for Mopsi2012.

Birch3: The parameter values taken were knn:5,
snn:2, density:2. The base dataset size was 80000
points and 20000 points were inserted upon it. The
algorithm components were computed up based on the
base dataset.We started with 2 added points/batch
and continued till 50 points/batch were added. On
entering upto 50 points/batch Batch-Inc8 showed
speedup of 40.67 times and was quicker than IncSNN-
DBSCAN by about 97.50% For 10000 batches, maxi-
mum of about 0.0173% of Typel and about 0.0216%
of Type 2 affected points were identified(figure) while
processing batch number 386 and 1599. Retaining
same parameters with w is 2 we deleted 10000 points
with 5000 batches and 2 points/batch from the base
dataset size of 100000 points. Batch-Dec3 was the
most efficient method and was about 80.03% faster
than its points wise measure when 20 points/batch
were deleted. A maximum of around 0.0154% of Typel
and about 0.0207% of Type 2 affected points were iden-
tified while processing batch number 4593 and 1707
respectively.

References

Ertoz, Levent, Steinbach, Michael, and Kumar, Vipin.
Finding clusters of different sizes, shapes, and densi-

i
1

I I | I | | I
0 1000 2000 3000 4000 5000 6000 7000
Batch number vs Type2 affected points %

0.025 T T
0.02
0015 f
0.01
0.005
0

i
8000

L
9000

10000

Tye‘2 affecteci points %‘

]
bl il

7000 8000 9000 10000

| A 1 !
0 1000 2000 3000 4000 5000 6000

Figure 3. Type 1 and Type 2 affected points during addition for
10000 batches for Birch3 dataset.

Batch number vs Typel affected points %

0.025 T T
0.02
0.015
0.01
0.005

Type‘ 1 affecleci points %‘

0 0 500 1000 1500 2000 2500 3000 3500
Batch number vs Type2 affected points %

0.025 T T T T

0.02

0.015 w

0.01

0.005 [

4000 4500 5000

Type‘z affected points %‘

A T

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Figure 4. Type 1 and Type 2 affected points during deletion for

5000 batches for Birch3 dataset.

ties in noisy, high dimensional data. In STAM SDM,
pp. 47-58, 2003. doi: 10.1137/1.9781611972733.5.

Jarvis, R. A. and Patrick, E. A. Clustering using
a similarity measure based on shared near neigh-
bors. IEEE Transactions on Computers, C-22(11):
Nov 1973. ISSN 0018-9340. pp. 1025-1034, doi:
10.1109/T-C.1973.223640.

Singh, Sumeet and Awekar, Amit. Incremental shared
nearest neighbor density-based clustering. In CIKM,
pp. 1533-1536, 2013.

