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Abstract

Distance metric learning has proven to be
very successful in various problem domains.
Most techniques learn a global metric in the
form of a n × n symmetric positive semidef-
inite (PSD) Mahalanobis distance matrix,
which has O(n2) unknowns. The PSD con-
straint makes solving the metric learning
problem even harder making it computa-
tionally intractable for high dimensions. In
this work, we propose a flexible formulation
that can employ different regularization func-
tions, while implicitly maintaining the posi-
tive semidefiniteness constraint. We achieve
this by eigendecomposition of the rank p Ma-
halanobis distance matrix followed by a joint
optimization on the Stiefel manifold Sn,p and
the positive orthant Rp

+. The resulting non-
convex optimization problem is solved by em-
ploying an alternating strategy. We use a re-
cently proposed projection free approach for
efficient optimization over the Stiefel mani-
fold. Even though the problem is noncon-
vex, we empirically show competitive clas-
sification accuracy on UCI and USPS digits
datasets.

1. Introduction

Distance metric learning has received a lot of atten-
tion in the last decade owing to its success in many
application domains like computer vision, classifica-
tion and clustering. The default Euclidean distance
equally weights each dimension in the input space and
is often inadequate to capture the semantics of the
data. Metric learning techniques use training exam-
ples to learn a distance function that is semantically
consistent with the data. The commonly used Maha-
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lanobis distance metric is characterized by a positive
semidefinite (PSD) matrix that applies a linear trans-
formation in the input space.

Many popular techniques (Davis et al., 2007; Kulis
et al., 2009; Jain et al., 2012; Law et al., 2014) set
up the metric learning problem in a constrained opti-
mization framework. The imposed constraints capture
the intuition that same class point pairs have small dis-
tances, while sample points from different classes have
a large distance. The challenge in solving such prob-
lems is efficient projection on to the constraint space
while maintaining the positive semidefiniteness of the
Mahalanobis distance matrix.

Techniques that rely on projection on to Sn+ like (Wein-
berger & Saul, 2009; Xing et al., 2002; Law et al.,
2014), usually require an eigen-decomposition or SVD
in each iteration resulting in an additional cost of
O(n3). Projection free approaches like (Davis et al.,
2007; Kulis et al., 2009; Jain et al., 2012) use spe-
cial regularization functions leading to updates that
guarantee positive semidefiniteness. In this paper, we
explore a projection free approach that permits the
flexibility to use different regularization functions.

The remainder of the paper is organized as follows.
We provide a brief review of Stiefel manifold in Sec-
tion 2 followed by the details of the proposed frame-
work in Section 3. The experimental results are pre-
sented in Section 4. We discuss the extension of our
parametrization in Section 5 and conclude in Section
6.

2. Optimization on the Stiefel Manifold

The set of n × p orthornormal matrices has a Rie-
mannian structure and is called the Stiefel manifold,
Sn,p = {U ∈ Rn×p : U>U = Ip, n ≥ p} (Edelman
et al., 1998). An alternate interpretation is that of a
quotient space of the orthogonal group On = {Q ∈
Rn×n : Q>Q = In},i.e. , Sn,p = On/On−p.The tan-
gent space at a point U ∈ Sn,p is given by TU = {∆ ∈
Rn×p : ∆>U = −U>∆}.
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Wen and Jin (Wen & Yin, 2013) proposed an efficient
constraint preserving update on the Stiefel manifold
based on the Cayley transformation. The key idea is
to relax the constraint of moving along geodesics and
use retraction (Absil et al., 2008) to smoothly map
a tangent vector to manifold. For a given point U ∈
Sn,p, let G be the gradient of F(U). A skew symmetric

matrix A = GU> −UG> is then defined to get the
following update in closed form (Wen & Yin, 2013).

V(τ) = QU ,where Q =
(

I +
τ

2
A
)−1 (

I− τ

2
A
)

(1)

Since we seek fast updates on the Stiefel manifold, we
resort to this update scheme in designing our metric
learning algorithm.

3. Proposed Framework

3.1. Notations

We denote the set of data points X = {x1,x2, . . . ,xm},
with xi ∈ Rn, i = 1, . . . ,m and their corresponding
class labels by `i.The n-dimensional real space is de-
noted by Rn and its positive orthant as Rn

+. As we use
pairwise constraints for metric learning, the constraint
point pairs are grouped into two sets: Cs, the set of
similar pairs and Cd, the set of dissimilar pairs. The
complete set of constraints is denoted by C = Cs ∪ Cd.

3.2. Problem Formulation

Our formulation for metric learning is based on the
premise that PSD matrices have nonnegative eigen-
values and orthogonal eigenvectors. Thus we work
with the representation of the rank p Mahalanobis
matrix obtained by its eigendecomposition, Mn×n =
UWU>, W = Diag(w), where U ∈ Sn,p is the or-
thonormal matrix of eigenvectors, and w ∈ Rp

+ is the
vector of eigenvalues. We rewrite the metric learning
problem as a joint optimization over Sn,p×Rp

+ and use
||w||22 as the regularization function, which is equiva-
lent to ||M||2F , the squared Frobenius norm of M.

The convex metric learning problem with the Frobe-
nius norm regularizer is

min
M∈Sn

+

||M−M0||2F (2)

subject to z>ijMzij ≤ s, ∀ i, j ∈ Cs
z>ijMzij ≥ d, ∀ i, j ∈ Cd

where the vectors zij are the difference vectors xi−xj

obtained from the constraint pairs in C, s and d are
the desired distances for constraints in Cs and Cd re-
spectively. M0 is the initial Mahalanobis distance ma-
trix, often initialized to identity or the data covariance
matrix. Since the problem in (2) could be infeasible,

we introduce slack variables ξ and rewrite the relaxed
problem as

min
w∈Rp

+,U∈Sn,p,ξ∈R|C|
||w −w0||22 + γ||ξ − ξ0||

2
2 (3)

s.t. z>ijUDiag(w)U>zij ≤ ξij ,∀ i, j ∈ Cs
z>ijUDiag(w)U>zij ≥ ξij ,∀ i, j ∈ Cd

where w0 is the vector of eigenvalues of M0. The
initial vector of slack variables ξ0 of length |C| takes
values (ξ0)ij = {s, d} based on whether i, j ∈ Cs or
i, j ∈ Cd. Note that the problem becomes nonconvex
because of the domain of U, which is the Stiefel mani-
fold. The solution to the problem (3) yields ŵ and Û,
which are used to reconstruct the Mahalanobis matrix

M̂ = ÛDiag(ŵ)Û
>

.

Intuitively, the solution to (3) gives an orthogonal

basis Û of the p-dimensional subspace of Rn, along
with minimal scaling required to satisfy the distance
constraints. While we cannot theoretically guarantee
good generalization, our experiments in Section 4 show
that results are competitive with metric learned by
solving (2).

3.3. Algorithm

We solve the problem developed in (3) jointly over
Sn,p × Rp

+ by taking an alternating minimization ap-
proach. We initialize the algorithm with the Euclidean
metric in a p-dimensional space with w0 as a vector of
ones and U0 as a randomly picked point on Sn,p.

The algorithm alternates between two steps: it solves
for U in (3) while keeping w fixed and vice versa till
the convergence criteria is satisfied.

The optimization problem in (3), with fixed U is a
constrained least square problem. We write the corre-
sponding unconstrained Lagrangian in (4) and obtain
updates for w and ξ using KKT conditions for single
constraint (i, j) ∈ C.

min
w∈Rp

+,ξ∈R|C|
||w −w0||22 + γ||ξ − ξ0||22 (4)

+λtij yij(z
>
ijU

tDiag(wt)Ut>zij − ξtij)

Here yij = −1, if i, j ∈ Cs and yij = 1 if i, j ∈ Cd
and λij ≥ 0 are the Lagrange multipliers. With an
updated w, we then solve for U for the same constraint
pair (i, j). This is achieved by solving the following
problem over the Stiefel manifold using updates in (1)

min
Ut∈Sn,p

λtij yij(z
>
ijU

tDiag(wt)Ut>zij − ξtij). (5)

We pick another constraint and repeat the updates (4)
and (5) till convergence. Since p could be as large as
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n, and the updates (1) require inversion of a 2p × 2p
matrix (Wen & Yin, 2013), we use a block coordinate
descent like strategy proposed in (Collins et al., 2014)
to speed up this step. The key idea in (Collins et al.,
2014) is to parametrize U by a point on a smaller
Stiefel manifold. To obtain this parametrization, a set
of k ≤ n rows K, is selected from U to construct a
smaller matrix Hk×p. If I is the set of linearly inde-
pendent columns of H, the parametrization is given as

U(V) =

[
VP1/2 VP1/2R
UK̄,I UK̄,Ī

]
(6)

where P = H>·,IH·,I is positive definite, the K̄ and Ī
denote the complementary sets ofK and I respectively.
The matrix R ∈ R|I|×|Ī| is the linear transformation
that maps H·,I to H·,Ī and the orthonormal matrix V
is a point on the smaller Stiefel manifold Sk,|I|. Collins
(2014) show that a descent curve on Sk,|I| gets mapped
to the original manifold Sn,p by (6) in a direction of de-
scent. As each block of k rows is updated on a smaller
Stiefel manifold, we get efficient updates for U. More-
over, this block coordinate descent type strategy can
be parallelized by using disjoint sets of rows Ki such
that | ∪i Ki| ≤ n.

4. Experiments

We refer our formulation in (3) as SMML (Stiefel Man-
ifold based Metric learning) and evaluate the learned
metric against the Euclidean distance metric in terms
of classification accuracy of a 3-nearest neighbor classi-
fier on the UCI benchmark data sets and USPS digits.
We compared the run time of SMML to solve (3) with
that of SeDuMi (Sturm, 1999) to solve the relaxed ver-
sion of (2). The experiments ran on a laptop with a
core i7 quad core processor and 8 GB RAM with only
two cores enabled. The threshold values s and d in (3)
for similarity and dissimilarity constraints are set to
the 1st and 99th percentile of all pairwise distances.

For high dimensional data, we optimize simultaneously
over multiple Sk,p by selecting disjoint sets of |K| rows,
whereas a sequential approach is used in case of low
dimension data to avoid communication overheads be-
tween parallel threads. The optimal choice of K is
found heuristically.

USPS digits 1 dataset consists of 16×16 grayscale im-
ages with 1100 images for each digit. The images are
represented as 256 dimensional vector formed by con-
catenating the columns of image. The results for UCI
datasets and USPS digits are summarized in Table 1.

We also compare our approach with convex formula-
tion for USPS digits. We used PCA to reduce the

1http://cs.nyu.edu/roweis/data.html

Table 1. Classification Accuracy and Run Time Results

USPS Wine Inosphere
# samples 11000 178 351
# constraints (|C|) 900 630 900
# dimension 256 13 34
# dimension after PCA 114
# Training points 150 45 30
# Testing points 2000 133 148
# classes 10 3 2
|K| 24 5 8

Classification Accuracy%
Euclidean 76.10 72.3 69.4
CVX 93.7 94.6 98
SMML 93.1 95 97.3

Run Time(in secs)
CVX 846.3 7.2 22.6
SMML 346 13.6 39.2

Table 2. Results on USPS digits for different dimensions
from PCA

Run time(in mins)/Accuracy(%)
PCA dimension, |K| CVX SMML

38,10 10/83 8.7/82
66,22 54/80 17/89.4
152,30 - 39/93.7

dimensionality of the data with 99%, 95% and 90% en-
ergy. While the results for convex formulation and our
proposed method are same for lower dimension rep-
resentation with improvement in computation time.
However, in case of higher dimensions, the learning
with SeDuMi solver becomes computationally expen-
sive in terms of memory usage with impractical run
times. The accuracy and run time comparisons are
summarized in Table 2.

5. Extension

We later, modify the metric learning formulation in (3)
and formulate an unconstrained optimization problem.
The two-term objective contains a hinge loss function
to control distance constraint violations and a `2-norm
regularizer to ensure smoothness. This formulation
optimizes for all the constraints simultaneously instead
of solving for only one constraint at every iteration.
The formulation is given by

min
U∈Sn,p,w∈Rp

+

m∑
i,j=1

[
yij(z

>
ijUDiag(w)U>zij − bij)

]
+

+ α ‖w −w0‖22 (7)

Here, the term [x]+ = max(0, x) is the hinge loss term
that captures the degree of violation of constraints, bij
are the corresponding target distances. and α > 0 is a

http://cs.nyu.edu/∼roweis/data.html
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Table 3. Comparison of Classification Accuracies of differ-
ent metric learning approaches

Dataset Our ITML LMNN

USPS digits 79.93±1.54 75.27± 1.26 76.88±6.98
MIT scene 60.7±1.54 50.93± 1.72 45.15± 6.53

regularization parameter.

Due to space limitations, we are unable to describe
the detailed algorithm for optimizing (7). We use an
alternating strategy similar to (Liu et al., 2015).

We present our preliminary results on USPS digits and
MIT scene 2 datasets in Table 3. We also compare
our approach with state of the art metric learning
approaches: ITML (Davis et al., 2007) and LMNN
(Weinberger & Saul, 2009). For both the datasets
we perform dimensionality reduction using PCA while
preserving 95% energy.

6. Conclusion
We proposed a metric learning formulation that poses
a joint optimization problem over Sn,p × Rp

+ to find
the eigenvectors and eigenvalues of the learned Maha-
lanobis distance matrix M. We took an alternate min-
imization approach by iteratively updating the eigen-
values and the eigenvectors of M to solve the ensu-
ing nonconvex problem. The proposed method showed
competitive performance in classification tasks against
convex formulation as well as state of the art meth-
ods. Since, our formulation allows the flexibility to
replace the regularizer with any convex spectral func-
tion, we plan to explore the impact of other functions
like log det or Burg entropy in future.

Dual Submission
This paper is primarily a version of our work published
in Proceedings of the 1st International Workshop on
DIFFerential Geometry in Computer Vision for Anal-
ysis of Shapes, Images and Trajectories (DIFF-CV
2015) 3, pages 7.1-7.10. BMVA Press, September 2015.
This work also includes our formulation accepted at
ICIP 2016 4 and will be available for Open Preview on
IEEE Xplore a month before the conference.
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