
Faster K-Means Cluster Estimation

Siddhesh Khandelwal siddhesh166@gmail.com
Amit Awekar amitawekar@gmail.com

Indian Institute of Technology Guwahati, Guwahati, Assam, 781039.

Abstract

K-means is a widely used iterative cluster-
ing algorithm. There has been considerable
work on improving k-means in terms of mean
squared error (MSE) and speed, both. How-
ever, most of the k-means variants tend to
compute distance of each data point to each
cluster centroid for every iteration. We pro-
pose two heuristics to overcome this bottle-
neck and speed up k-means. Our first heuris-
tic predicts the candidate clusters for each
data point by looking at nearby clusters after
first iteration of k-means. Our second heuris-
tic further reduces this candidate cluster list
aggressively. We augment well known vari-
ants of k-means with our heuristics to demon-
strate effectiveness of our heuristics. For var-
ious synthetic and real-world datasets, our
heuristics achieve speed-up of up-to 10 times
without significant increase in MSE.

1. Introduction

The objective of K-means is to partition a dataset D
with n data points in d dimensions into k clusters such
that the mean squared error (MSE) is minimized. The
K-means problem is NP-hard. Polynomial time heuris-
tics are commonly applied to obtain a local minimum.

One such popular heuristic is the Lloyd’s algo-
rithm(Lloyd, 1982) that selects certain initial centroids
at random from the dataset. Each data point is as-
signed to the cluster corresponding to the closest cen-
troid. Each centroid is then recomputed as mean of
the points assigned to that cluster. This procedure
is repeated until convergence. Each iteration involves
n∗k distance computations. Our contribution is to re-
duce this cost to n∗k′, where k′ is significantly smaller
than k.

Appearing in Proceedings of the 2nd Indian Workshop on
Machine Learning, IIT Kanpur, India, 2016. Copyright
2016 by the author(s).

Over the years, there has been significant work to im-
prove Lloyd’s algorithm both in terms of MSE and
speed. These improvements can be classified into the
following broad domains: Improving initial seed selec-
tion(Likas et al., 2003; Arthur & Vassilvitskii, 2007),
Selecting ideal value for number of clusters(Pham
et al., 2005), and Estimating bounds for distance be-
tween data point and cluster centroid(Elkan, 2003;
Fahim et al., 2006). Our work does not compete with
these variants of K-means. Rather, we augment these
variants of K-means with our work to demonstrate ef-
fectiveness of our work.

We propose two heuristics that significantly reduce the
number of data point to cluster centroid distance com-
putations. Our first heuristic considers only a subset
of nearby cluster as candidates for deciding member-
ship for a data point. This heuristic has advantage
of speeding up K-means clustering with marginal in-
crease in MSE at the cost of memory overhead. Candi-
date cluster list for a data point can be further reduced
aggressively depending upon how close the data point
is to the centroid of its current cluster. As compared
to first heuristic, second heuristic gives two benefits:
reduced number of distance computations and reduced
memory footprint. However, second heuristic results
in slightly higher value of MSE.

2. Our Work

Our main contribution is in defining two heuristics
that can be used as augmentation to current variants of
k-means for faster cluster estimation. Let algorithm V
be a variant of k-means and algorithm V ′ be the same
variant augmented with our heuristics. Let T be the
time required for V to converge to MSE value of E.
Similarly, T ′ is the time required for V ′ to converge
to MSE value of E′. We should satisfy following two
conditions when we compare V with V ′:

• Condition 1: T ′ is smaller than T , and

• Condition 2: E′ is not significantly higher than
E.



Faster K-Means Cluster Estimation

Figure 1. Point Distribution per Iteration - Compared to
Cluster Assignment in Previous Iteration

In short, these conditions state that a K-means variant
augmented with our heuristics should converge faster
without significant increase in final MSE.

2.1. Heuristic 1: Candidate cluster list for
each data point

This heuristic leverages a list of candidate clusters for
each data point to reduce distance computations. Let
size of this list be k′. We assume that k′ is significantly
smaller than k. We build this candidate cluster list
based on top k′ nearest clusters to the data point after
first iteration of K-means. Now each iteration of K-
means will perform only n ∗ k′ distance computations.

Motivation for this approach comes from the observa-
tion that data points have tendency to go to clusters
that were closer in the previous iteration. Figure 1
shows an example execution of k-means for a synthetic
dataset of 100,000 points in 10 dimensions which needs
to be partitioned into 100 clusters. X axis represents
iteration of the algorithm and Y axis represents per-
centage of points that get assigned to a particular clus-
ter. As we progress through the algorithm, we observe
from the figure that more points get assigned to same
cluster or clusters that were close in previous iteration.

Consider a data point p1 and various cluster centroids
represented as c1, c2..., ck. Initially, all centroids are
chosen randomly or using one of the seed selection al-
gorithms mentioned in Section 3. Let us assume that
k′= 4 and after first iteration c8, c5, c6, and c1 are the
top four closest centroids to p1 in the increasing order
of distance. If we run K-means for second iteration, p1
will compute distance to all k centroids. After second
iteration, top four closest centroid list might change in
two ways:

• Members of the list do not change but only rank-
ing changes among the members. For example,
top four closest centroid list for p1 might change
to c1, c6, c8, and c5 in the increasing order of dis-
tance.

• Some of the centroids in the previous list are re-
placed with other centroids which were not in the
list. For example, top four closest list for p1 might
change to c5, c2, c9, and c8 in the increasing order
of distance

However, we have observed that for synthetic as well as
real world datasets, second case occurs rarely. There-
fore, top k′ closest centroid list after first iteration for
a data point is a good enough estimate for the closest
cluster for that data point after K-means converges.
Our heuristic involves memory overhead of O(n ∗ k′)
to maintain candidate cluster list for each point and
one time computation of candidate cluster list.

2.2. Heuristic 2: Reduction in size of
candidate cluster list

Heuristic 2 dynamically reduces size of candidate clus-
ter list for some of the data points if they are closer
to centroid of current cluster. This heuristic is based
on observation that points closer to centroid almost
never change their cluster membership. Please refer
to Figure 1. During later iterations, more than 90%
of the data points maintain their current cluster mem-
bership. Computing distance of such data points to
all members of candidate cluster list is redundant.

We define closeness of a data point to its current clus-
ter as ratio of cluster radius to distance of that data
point from cluster centroid. If closeness of data point
is more than parameter α then we assume that the
data point will not change its membership in further
iterations and reduce the size of candidate cluster list
to just one. This has two advantages: reduction in
memory overhead to maintain candidate cluster lists
and reduction in distance computations. We have ob-
served that closeness value after second iteration is a
good enough estimate of closeness value for later iter-
ations. Closeness computation is done only once and
candidate cluster list is truncated for points having
closeness more than parameter α. It is possible that
closeness for a point might decrease in further iter-
ations. But we have observed that it happens rarely
and avoid re-computation of closeness value for all data
points. This aggressive truncation of candidate cluster
list reduces running time at the cost of slight increase
in the MSE.



Faster K-Means Cluster Estimation

3. Related Work

In last three decades, there has been significant work
on improving Lloyd’s algorithm (Lloyd, 1982) both in
terms of reducing MSE and increasing speed. Arthur
et. al.(Arthur & Vassilvitskii, 2007) provided a better
method for seed selection based on a probability distri-
bution over closest cluster centroid distances for each
data point. Likas et. al.(Likas et al., 2003) proposed
the Global k-means method for selecting one seed at
a time to reduce final mean squared error. Pham
et. al.(Pham et al., 2005) designed a novel function
to evaluate goodness of clustering for various poten-
tial values of number of clusters. Elkan(Elkan, 2003)
use triangle inequality to avoid redundant computa-
tions of distance between data points and cluster cen-
troids. Fahim et. al.(Fahim et al., 2006) proposed a
method that avoids redundant calculations if a data
point moves closer to centroid of its current cluster.

Seed selection based K-means variants differ from
Lloyd’s algorithm only for the method of seed selec-
tion. Our heuristics can be directly used in such algo-
rithms. K-means variants that find appropriate num-
ber of clusters in data, evaluate goodness of cluster-
ing for various potential values of number of clusters.
Such algorithms can use our heuristics while generat-
ing clustering for each potential value of k in K-means.
K-means variants that compute exact distances only to
few centroids for each data point, compute bounds on
distances to rest of the centroids for each data point.
Our heuristics can help such K-means variants to fur-
ther reduce distance and bound calculations.

4. Experimental Results

Our heuristics can be used in augmentation with mul-
tiple variants of K-means mentioned in Section 3.
However due to lack of space, we present results of
augmenting our heuristics only with K-means with
triangle inequality (KMT)(Elkan, 2003). Augmenting
KMT with our heuristic 1 is referred as algorithm H1
and augmentation with heuristic 2 is referred as algo-
rithm H2.

During each iteration KMT, a data point computes
distance to the centroid of its current cluster. KMT
uses triangle inequality to compute efficient lower
bounds on distances to all other centroids. A data
point will compute exact distance to any other centroid
only when lower bound on such distance is smaller
than distance to the centroid of its current cluster.
During each iteration of H1, a data point will also
compute distance to the centroid of its current clus-
ter. However, H1 will compute lower bounds on dis-

Figure 2. Speed Up Comparison

tances to centroids only in candidate cluster list. A
data point will compute exact distance to any other
centroid in the candidate cluster list only when lower
bound on such distance is smaller than distance to the
centroid of its current cluster. Each iteration of H2 is
similar to H1 with the difference that H2 will truncate
candidate cluster list of some data points after second
iteration.

Experimental results presented here are done on a real
world dataset called the “covertype” dataset (soil and
forest cover measurements). A sample of 100000 points
was used for our experiments. The dataset is in 54
dimensions and the value of the number of clusters
(k) is set to 100. We chose this dataset because it
was used by Elkan et. al.(Elkan, 2003) to demonstrate
effectiveness of KMT. For H2, value of parameter α is
set to two.

4.1. Comparison of T with T ′

Please refer to Figure 2. X axis represents size of can-
didate cluster list (k′). Y axis represents speed up
over KMT. Speed up of an algorithm is calculated as
running time of KMT divided by running time of that
algorithm. Running time of KMT is independent of
value of k′. For small values of k′, H1 provides good
speed up over KMT. This is expected as for small value
of k′, H1 can avoid many redundant distance compu-
tations using small candidate cluster list. Speed up
of H1 over KMT is not same as ratio k/k′. Reason
for less speed up is that KMT also avoids some dis-
tance computations using its own filtering criteria of
triangle inequality. As value of k′ increases to 60, run-
ning time of H1 approaches running time of KMT.
H2 performs significantly better than H1. Aggressive
pruning of candidate cluster list pays off especially well
for higher values of k′. This shows that our heuristics
satisfy Condition 1 mentioned in Section2.



Faster K-Means Cluster Estimation

Figure 3. MSE Comparison

Figure 4. Memory Footprint Comparison

4.2. Comparison of E with E′

Please refer to Figure 3. X axis represents size of can-
didate cluster list (k′). Y axis represents percentage
change in final MSE of an algorithm as compared to
KMT. MSE of KMT is independent of k′. MSE of H1
is always slightly higher than KMT and it increases
marginally as value of k′ is reduced. MSE of H2 is
slightly higher than H1 for all values of k′ as H2 is
aggressively reduces distance computations by prun-
ing candidate cluster list for some data points. Even
for small value of k′, MSE of H2 is only 0.6 percent
higher than KMT. This shows that our heuristics sat-
isfy Condition 2 mentioned in Section 2.

4.3. Comparison of memory footprint

Please refer to Figure 4. X axis represents various it-
erations of a particular execution of an algorithm. Y
axis represents memory footprint of the algorithm in
megabytes. Value of k′ is fixed to 40. Memory foot-
print of KMT remains constant through all iterations.
Memory footprint of H1 is also constant but higher
than KMT as H1 stores candidate cluster list for each
data point. H2 starts with same memory footprint as
H1, but quickly reduces its memory footprint by ag-
gressively truncating candidate cluster list for many
data points after second iteration. This shows effec-
tiveness of H2 at reducing memory requirement.

5. Conclusion and Future Work

We presented two heuristics to attack the bottleneck
of redundant distance computations in K-means. Our
first heuristic limits distance computations for each
data point to a small candidate cluster list. Our second
heuristic further reduces this candidate cluster list to
achieve higher speed up and lower memory footprint at
the cost of slightly higher MSE. Our heuristics can be
easily augmented with existing variants of K-means.

We believe that bottleneck of redundant distance com-
putations is not unique to K-means. It will be interest-
ing to see whether other iterative clustering algorithms
have similar bottleneck and can we speed them up by
avoiding redundant computations.

Dual Submission

Our work is currently under submission at the Inter-
national Conference on Information and Knowledge
Management (CIKM 2016). It will be held from Oc-
tober 24 to October 28, 2016 in Indianapolis, United
States. The URL to the conference website is http:

//cikm2016.cs.iupui.edu/

References

Arthur, David and Vassilvitskii, Sergei. k-means++:
The advantages of careful seeding. In ACM-SIAM
symposium on Discrete algorithms, pp. 1027–1035,
2007.

Elkan, Charles. Using the triangle inequality to ac-
celerate k-means. In International Conference om
Machine Learning, pp. 147–153, 2003.

Fahim, AM, Salem, AM, Torkey, FA, and Ramadan,
MA. An efficient enhanced k-means clustering algo-
rithm. Journal of Zhejiang University SCIENCE A,
7(10):1626–1633, 2006.

Likas, Aristidis, Vlassis, Nikos, and Verbeek, Jakob J.
The global k-means clustering algorithm. Pattern
recognition, 36(2):451–461, 2003.

Lloyd, Stuart P. Least squares quantization in pcm.
Information Theory, IEEE Transactions on, 28(2):
129–137, 1982.

Pham, Duc Truong, Dimov, Stefan S, and Nguyen,
CD. Selection of k in k-means clustering. Journal
of Mechanical Engineering Science, 219(1):103–119,
2005.

http://cikm2016.cs.iupui.edu/
http://cikm2016.cs.iupui.edu/

