
DASA: Domain Adaptation in Stacked Autoencoders using
Systematic Dropout

Abhijit Guha Roy abhijit.guharoy@iitkgp.ac.in
Debdoot Sheet debdoot@ee.iitkgp.ernet.in

Department of Electrical Engineering, Indian Institute of Technology Kharagpur

Abstract

Domain adaptation deals with adapting be-
haviour of machine learning based systems
trained using samples in source domain to
their deployment in target domain where the
statistics of samples in both domains are
dissimilar. The task of directly training or
adapting a learner in the target domain is
challenged by lack of abundant labeled sam-
ples. In this paper we propose a technique for
domain adaptation in stacked autoencoder
(SAE) based deep neural networks (DNN)
performed in two stages: (i) unsupervised
weight adaptation using systematic dropouts
in mini-batch training, (ii) supervised fine-
tuning with limited number of labeled sam-
ples in target domain. We experimentally
evaluate performance in the problem of reti-
nal vessel segmentation where the SAE-DNN
is trained using large number of labeled sam-
ples in the source domain (DRIVE dataset)
and adapted using less number of labeled
samples in target domain (STARE dataset).

1. Introduction

The under-performance of learning based systems dur-
ing deployment stage can be attributed to dissimi-
larity in distribution of samples between the source
domain on which the system is initially trained and
the target domain on which it is deployed. Transfer
learning is an active field of research which deals with
transfer of knowledge between the source and target
domains for addressing this challenge and enhancing
performance of learning based systems (Pan & Yang,
2010), when it is challenging to train a system exclu-
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sively in the target domain due to unavailability of
sufficient labeled samples. While domain adaptation
(DA) have been primarily developed for simple rea-
soning and shallow network architectures, there exist
few techniques for adapting deep networks with com-
plex reasoning. In this paper we propose a systematic
dropout based technique for adapting a stacked au-
toencoder (SAE) based deep neural network (DNN)
for the purpose of vessel segmentation in retinal im-
ages (Abràmoff et al., 2010). Here the SAE-DNN is
initially trained using ample number of samples in the
source domain (DRIVE dataset) to evaluate efficacy of
DA during deployment in the target domain (STARE
dataset) where an insufficient number of labeled sam-
ples are available for reliable training exclusively in the
target domain.

Related Work: Stacked AE (SAE) is created by hi-
erarchically connecting hidden layers to learn hierar-
chical embedding in compressed representations. An
SAE-DNN consists of encoding layers of an SAE fol-
lowed by a target prediction layer for the purpose of re-
gression or classification. With increase in demand for
DA in SAE-DNNs different techniques have been pro-
posed including marginalized training (Minmin et al.,
2012), via graph regularization (Peng et al., 2013) and
structured dropouts (Yang & Eisensteinl, 2014).

Challenge: The challenge of DA is to retain nodes
common across source and target domains, while
adapting the domain specific nodes using fewer num-
ber of labeled samples. Earlier methods (Minmin
et al., 2012; Peng et al., 2013; Yang & Eisensteinl,
2014) are primarily challenged by their inability to
re-tune nodes specific to the source domain to nodes
specific for target domain for achieving desired perfor-
mance, while they are able to only retain nodes or a
thinned network which encode domain invariant hier-
archical embeddings.

Approach: Here we propose a method for DA in
SAE (DASA) using systematic dropout. The two stage
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Figure 1. Overview of the process of DASA. The shifts in
distribution of color statistics across samples in Dsource and
Dtarget are also illustrated.

method adapts a SAE-DNN trained in the source do-
main following (i) unsupervised weight adaptation us-
ing systematic dropouts in mini-batch training with
abundant unlabeled samples in target domain, and (ii)
supervised fine-tuning with limited number of labeled
samples in target domain. The systematic dropout
per mini-batch is introduced only in the represen-
tation encoding (hidden) layers and is guided by a
saliency map defined by response of the neurons in
the mini-batch under consideration. Error backpropa-
gation and weight updates are however across all nodes
and not only restricted to the post dropout activated
nodes, contrary to classical randomized dropout ap-
proaches (Srivastava, et al., 2014). Thus having differ-
ent dropout nodes across different mini-batches and
weight updates across all nodes in the network, ascer-
tains refinement of domain specific hierarchical embed-
dings while preserving domain invariant ones.

2. Problem Statement

Let us consider a retinal image represented in the RGB
color space as I, such that the pixel location x ∈ I
has the color vector c(x) = {r(x), g(x), b(x)}. N(x)
is a neighborhood of pixels centered at x. The task
of retinal vessel segmentation can be formally defined
as assigning a class label y ∈ {vessel,background} us-
ing a hypothesis model H(I,x, N(x); {I}train). When
the statistics of samples in I is significantly dissim-
ilar from Itrain, the performance of H(·) is severely
affected. Generally {I}train is referred to as the source
domain and I or the set of samples used during de-
ployment belong to the target domain. The hypoth-
esis H(·) which optimally defines source and target
domains are also referred to as Hsource and Htarget .
DA is formally defined as a transformation Hsource to
Htarget as detailed in Fig. 1.

3. Exposition to the Solution

Let us consider the source domain as Dsource with
abundant labeled samples to train an SAE-DNN
(Hsource) for the task of retinal vessel segmentation,
and a target domain Dtarget with limited number of
labeled samples and ample unlabeled samples, insuffi-
cient to learn Htarget reliably as illustrated in Fig. 1.
Dsource and Dtarget are closely related, but exhibiting
distribution shifts between samples of the source and
target domains, thus resulting in under-performance
of Hsource in Dtarget as also illustrated in Fig. 1. The
technique of generatingHsource using Dsource , and sub-
sequently adapting Hsource to Htarget via systematic
dropout using Dtarget is explained in the following sec-
tions.

3.1. SAE-DNN learning in the source domain

AE is a single layer neural network that encodes the
cardinal representations of a pattern p = {pk} onto a
transformed spaces y = {yj} with w = {wjk} denoting
the connection weights between neurons, such that

y = fNL([w b].[p ; 1]) (1)

where the cardinality of y denoted as |y| = J × 1,
|p| = K × 1, |w| = J ×K, and b is termed as the bias
connection with |b| = J × 1. We choose fNL(·) to be a
sigmoid function defined as fNL(z) = 1/(1+exp(−z)).
AE is characteristic with another associated function
which is generally termed as the decoder unit such that

p̂ = fNL([w′ b′].[y ; 1]) (2)

where |p̂| = |p| = K × 1, |w′| = K × J and |b′| =
K × 1. When |y| << |{pn}|, this network acts to
store compressed representations of the pattern p en-
coded through the weights W = {w,b,w′,b′}. How-
ever the values of elements of these weight matrices
are achieved through learning, and without the need
of having class labels of the patterns p, it follows unsu-
pervised learning using some optimization algorithm,
viz. stochastic gradient descent.

{w,b,w′,b′} = arg minw,b,w′,b′ (J(W)) (3)

such that J(·) is the cost function used for optimization
over all available patterns pn ∈ {p(x),x ∈ I}

J(W) =
∑
n

‖pn − p̂n‖+ β|ρ− ρ̂n| (4)



DASA: Domain Adaptation in Stacked Autoencoders using Systematic Dropout

where β regularizes the sparsity penalty, ρ is the im-
posed sparsity and ρ̂n is the sparsity observed with the
nth pattern in the mini-batch.

The SAE-DNN consists of L = 2 cascade connected
AEs followed by a softmax regression layer known as
the target layer with t as its output. The number of
output nodes in this layer is equal to the number of
class labels such that |t| = |Ω| and the complete DNN
is represented as

t = fNL ([w3 b3]. [fNL ([w2 b2]. [fNL ([w1 b1].

[p 1]
T
)

1
]T)

1

]T)
(5)

where {W1 = {w1,b1},W2 = {w2,b2}} are the pre-
trained weights of the network obtained from the ear-
lier section. The weights W3 = {w3,b3} are randomly
initialized and convergence of the DNN is achieved
through supervised learning with the cost function

J(W) =
∑
m

‖tm − Ωm‖ (6)

during which all the weights W = {W1 =
{w1,b1},W2 = {w2,b2},W3 = {w3,b3}} are up-
dated to completely tune the DNN.

3.2. SAE-DNN adaptation in the target
domain

Unupervised adaptation of SAE weights using
systematic dropouts: The first stage of DA utilizes
abundant unlabeled samples available in target domain
to retain nodes which encode domain invariant hierar-
chical embeddings while re-tuning the nodes specific in
source domain to those specific in target domain. We
follow the concept of systematic node drop-outs dur-
ing training (Srivastava, et al., 2014). The number of
layers and number of nodes in the SAE-DNN however
remains unchanged during domain adaptation. Fig. 2
illustrates the concept.

Weights connecting each of the hidden layers is im-
ported from the SAE-DNN trained in Dsource are up-
dated in this stage using an auto-encoding mechanism.
When each mini-batch in Dtarget is fed to this AE with
one of the hidden layers from the SAE-DNN; some of
the nodes in the hidden layer exhibit high response
with most of the samples in the mini-batch, while some
of the nodes exhibit low response. The nodes which
exhibit high-response in the mini-batch are representa-
tive of domain invariant embeddings which need to be

Figure 2. Illustration of the technique for unsupervised
adaptation of SAE weights using systematic dropout.

preserved, while the ones which exhibit low-response
are specific to Dsource and need to be adapted to
Dtarget . We set a free parameter τ ∈ [0, 1] defined
as the transfer coefficient used for defining saliency
metric ({slj} ∈ s) for the jth node in the lth layer as

slj = 1 if ylj ≥ τ else slj = 0 otherwise. Here ylj ∈ y
as in (1), and we redefine (2) while preserving (4) and
the original learning rules.

p̂ = fNL([w′ b′].[y.s ; 1]) (7)

Supervised fine tuning with limited number of
labeled samples: The SAE-DNN with weight em-
beddings updated in the previous stage is now fine
tuned using limited number of labeled samples in
Dtarget following procedures in (5) and (6).

4. Experiments

SAE-DNN architecture: We have a two-layered ar-
chitecture with L = 2 where AE1 consists of 400 nodes
and AE2 consists of 100 nodes. The number of nodes
at input is 15×15×3 corresponding to the input with
patch size of 15×15 in the color retinal images in RGB
space. AEs are unsupervised pre-trained with learn-
ing rate of 0.3, over 50 epochs, β = 0.1 and ρ = 0.04.
Supervised weight refinement of the SAE-DNN is per-
formed with a learning rate of 0.1 over 200 epochs. The
training configuration of learning rate and epochs were
same in the source and target domains, with τ = 0.1.

Source and target domains: The SAE-DNN is
trained in Dsource using 4% of the available patches
from the 20 images in the training set in DRIVE
dataset. DA is performed in Dtarget using (i) 4% of
the available patches in 10 unlabeled images for unsu-
pervised adaptation using systematic dropout and (ii)
4% of the available patches in 3 labeled images for fine
tuning.
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(a) Source
sample.

(b) Source
labels.

(c) Source
prediction.

(d) Target
sample.

(e) Target la-
bels.

(f) Targe pre-
diction with
DA.

Figure 3. Performance of the vessel segmentation with (a-
c) SAE-DNN on Dsource (DRIVE), (d-f) DASA on Dsource

(STARE)

Baselines and comparison: We have experimented
with the following SAE-DNN baseline (BL) config-
urations and training mechanisms for comparatively
evaluating efficacy of DA: BL1: SAE-DNN trained in
source domain and deployed in target domain without
DA; BL2: SAE-DNN trained in target domain with
limited samples and deployed in target domain.

5. Results and Discussion

The results comparing performance of the SAE-DNN
are reported in terms of logloss and area under ROC
curve as presented in Table 1, and DA aspects in Fig. 3.

logloss Area under ROC
Source domain 0.19± 0.05 0.90± 0.02

BL1 0.40± 0.31 0.86± 0.03
BL2 0.39± 0.68 0.87± 0.01

DASA 0.18± 0.02 0.92± 0.02

Table 1. Comparison of Performance with the baselines

Importance of transfer coefficient: The trans-
fer coefficient τ drives quantum of knowledge transfer
from the source to target domains by deciding on the
amount of nodes to be dropped while adapting with
ample unlabeled samples. This makes it a critical pa-
rameter to be set in DASA to avoid over-fitting and
negative transfers as illustrated in Table. 2 where op-
timal τ = 0.1. Generally τ ∈ [0, 1] with τ → 0 being
associated with large margin transfer between domains
when they are not very dissimilar, and τ → 1 being
associated otherwise.

τ 0 0.05 0.1 0.15 0.2
logloss 0.39 0.24 0.18 0.21 0.32

Table 2. Variation of logloss in DA with variation of τ

6. Conclusion

We have presented DASA, a method for knowledge
transfer in an SAE-DNN trained with ample labeled
samples in source domain for application in target do-
main with less number of labeled samples insufficient
to directly train to solve the task in hand. DASA
is based on systematic droupout for adaptation being
able to utilize (i) ample unlabeled samples and (ii) lim-
ited amount of labeled samples in target domain. We
experimentally provide its efficacy to solve the prob-
lem of vessel segmentation when trained with DRIVE
dataset (source domain) and adapted to deploy on
STARE dataset (target domain). It is observed that
DASA outperforms the different baselines. While sys-
tematic drouput is demonstrated on an SAE-DNN in
DASA, it can be extended to other deep architectures
as well.

Dual Submission: This paper has been presented at
3rd Asian Conference on Pattern Recognition, 3 − 6
Nov. 2015 at Kuala Lumpur, Malaysia.
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