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Abstract

Random forest (RF) is an ensemble learner
constructed using a set of decision trees,
where each tree is trained using randomly
bootstrapped samples and aggregated to pro-
vide a decision. While the generalization er-
ror is reduced by increasing the number of
trees in a RF, it substantially increases the
testing time complexity, inhibiting its fast de-
ployment in practical applications. In this
paper, we propose a post-training optimiza-
tion technique termed landscaping of RF for
reducing computational complexity by com-
pensating for trees associated with similar
decision boundary. This allows faster de-
ployment of the RF without compromising
its performance. Landscaping is achieved
through a two stage mechanism: (i) computa-
tion of decision similarity between all pairs of
trees in the RF, and (ii) deletion of the com-
putationally expensive tree in the RF with
decision bias compensation for the removed
tree. Performance of the proposed methodol-
ogy was evaluated using three publicly avail-
able datasets. The RF performance before
and after landscaping over the datasets was
observed to have an error of 0.1084 ± 0.03
and 0.1087 ± 0.03, respectively, while test-
ing times of the RF before landscaping was
2.5508± 0.08 sec. and 0.9066± 0.19 sec. af-
ter landscaping with 32 − 76% reduction in
execution time. These results strongly sub-
stantiates our claim of achieving deployment
speedup without compromising the decision
quality with landscaping of RF through con-
trolled deforestation.
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1. Introduction

Random forest (RF) is an ensemble learner which con-
sists of a set of independently learned decision trees
and is popularly used to solve classification and re-
gression tasks across machine vision viz. image classi-
fication (Bosch et al., 2007), segmentation (Yu et al.,
2011), etc. The salient feature of RF which provides
it an edge compared to other shallow learning sys-
tems (Fernández-Delgado et al., 2014) is its ability to
generalize over the feature space using limited train-
ing samples. Despite the increase in performance, in-
creased number of trees in the RF restricts its deploy-
ment in real-time application due to increased com-
putational complexity. In this paper, we present and
evaluate a method for post-training refinement of a
RF by removing trees with redundant contribution to
the decision boundary (termed as controlled deforesta-
tion), while retaining the remaining ones to form a
new landscaped RF (LRF) for fast deployment with re-
duced computational complexity while preserving de-
cision making performance.

Related Work Generally for solving complex real
world problems, trees with higher depths are required
(Gall & Lempitsky, 2013; Dollár & Zitnick, 2013).
Since the computational complexity at deployment is
dependent on depth of the tree, there have been some
approaches to reduce the tree size via pruning. Deci-
sion jungles is an alternative where merging of nodes
with similar class posteriori distribution is used to re-
duce the number of nodes to be evaluated thus leading
to reduced computational complexity without compro-
mising on the decision boundary. An alternative route
has been through removal of trivial trees in the RF
viz. by removing most correlated trees, or sequen-
tial incremental selection of bag of trees to form sub-
forest (Bernard et al., 2009).

Challenge Considering a fully grown RF with N
trees, the number of possible sub-forests to search from
is
∑N

i=1

(
N
i

)
= 2N−1. Considering a RF with 50 trees,
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Figure 1. The overall process of the landscaping of RF is
illustrated in the figure above. The trained RF is used to
create a similarity matrix (dkl) for controlled deforestation.
The tree pair is selected corresponding to lowest score.
This corresponds to functionally similar trees as shown.
The tree with higher depth is deleted. This process is re-
peated to get the landscaped RF without hampering the
overall performance as shown.

this equates to searching over 1.13×1015 possible sub-
forests to find an optimal configuration. The challenge
posed is to select an optimal configuration of a smaller
sized RF with substantially lower search time complex-
ity, preferably lesser then the current solutions which
depend on an order exponentially on the number of
trees in the RF.

Approach In this paper we proposed a scheme for re-
moval of redundant set of trees in the RF through the
process of controlled deforestation. It is a two stage
process based on (i) similarity scoring between the
pairs of trees in a RF based on the statistical distance
of their posteriori decision boundary, and (ii) sequen-
tial removal of the computationally expensive redun-
dant tree in a similar pair along with compensation of
the bias associated with this process as summarized
in Fig. 1. The rest of the paper is organized accord-
ingly with problem statement introduced in Sec. 2 and
exposition to the solution detailed in Sec. 3. The ex-
periments with results and discussions are presented
in Sec. 4. Finally, Sec. 5 concludes the work.

2. Problem Statement

Let us consider a data set represented as Q =
{(X1, Y1), (X2, Y2), . . . , (XL, YL)}, where Xl ∈ RD is
a D-dimensional feature vector representing the lth

observation sample and Yl ∈ Ω = {ω1, ω2, . . . , ωK}
is the class label associated with this observation.
Let x ∈ RD be a random variable (r.v.), such that

given a value of x, the decision making task is defined
as computing the posteriori probability p(ωk|x) =
H(ωk|x; {Q}train, N) using a RF H(·). Here the set
{Q}train consists of a few samples drawn randomly
from Q such that |{Q}train| ≤ |Q| and is generally
referred to as the training set, | · | is the set cardinal-
ity operator; N is the number of trees in the RF such
that H(·) = {T1(·), T2(·), . . . , TN (·)} and the posteriori
estimate of the RF is computed as

p(ωk|x) =
1

N

N∑
i=1

pTi(ωk|x) (1)

where pTi
(ωk|x) is the posteriori estimate of Ti(·). The

process of controlled deforestation (CD) is formally de-
fined as a transformation

H(ωk|x; {Q}train, N)
CD→ HLRF (ωk|x; {Q}train, N →M)

(2)
where HLRF (·) is the landscaped RF (LRF) obtained
from the trained RFH(·), consists of M trees such that
M ≤ N , and CD is performed under the constraint
that

p(ωk|x) = H(ωk|x; {Q}train, N)

' HLRF (ωk|x; {Q}train, N →M)
(3)

and our approach for achieving this is subsequently
described.

3. Exposition to the Solution

We achieve this objective of reducing the computa-
tional complexity of a RF through a two stage pro-
cess: (i) Controlled deforestation: similarity scoring
between the pairs of trees in a RF based on the sta-
tistical distance of their posteriori decision boundary,
and (ii) Landscaping of random forests: sequential re-
moval of the computationally expensive redundant tree
in a similar pair along with compensation of the bias
associated with this process.

An RF model H(·) = {T1(·), T2(·), . . . , TN (·)} is for-
mally constructed to have N number of trees. The
number of trees is generally empirically defined at the
start of the process. The posteriori estimate of each
tree in the RF is represented as

pTi
(ωk|x) = Ti(ωk|x;Qi,Θi) (4)

where Qi ⊂ {Q}train is a set of samples bootstrapped
from the training set {Q}train such that:

1. ∪{Qi} = {Q}train,

2. Qi ∩Qj 6= ∅, and
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3. {(x, y)} in Qi are independently drawn and iden-
tically distributed in {Q}train.

The vector Θi defines the ordered set of split functions
at each non-leaf node in Ti; Θi and Θj are not nec-
essarily related since they are obtained by training Ti
and Tj on Qi and Qj respectively (?).

3.1. Controlled Deforestation of Random
Forests

CD which has been formally defined in (2) involves
identification of redundant trees in the RF. Let the
r.v. x = {x(1), x(2), . . . , x(d), . . . , x(D)} ∈ Q have a
dynamic range in Q for each entry such that x(d) ∈
[x

(d)
min, x

(d)
max] and thus x is any random location in the

space S ⊂ RD where S = [x
(1)
min, x

(1)
max]× [x

(2)
min, x

(2)
max]×

· · ·× [x
(D)
min, x

(D)
max]. The posteriori decision boundary of

Ti is thus defined as

P(Ti) ⊃ {pTi
(ωk|x)∀x ∈ S, ωk ∈ Ω} (5)

Accordingly, the statistical distance between a pair of
trees Ti(·) and Tj(·) s.t. (Ti(·), Tj(·)) ∈ H(·) and i 6= j
can be obtained as

D (Ti(·), Tj(·)) = dJS (P(Ti),P(Tj))

=
∑
ωk∈Ω

dJS
(
pTi(ωk|x), pTj (ωk|x)

) (6)

where, dJS(·) is the Jensen-Shannon statistical dis-
tance metric (Jianhua, 1991), and D (Ti(·), Tj(·)) are

the
(
N
i

)
number of valid entries in the matrix D with

|D| = N ×N .

This pairwise distance indicated in D is the key to
identification of redundant trees associated with sim-
ilar decision boundary in the RF. The method of CD
employs identification of such pairwise redundancy, as-
sociated with minimum bin value in D, for substituting
the pair by a single tree for computational complexity
reduction for creating the LRF as detailed next.

3.2. Landscaping of Random Forests

In order to implement the transformation in (2), the
tree (say Ti(·)) associated with a lower depth is pre-
served, in a pair of trees (Ti(·), Tj(·)) identified with
the minimum bin entry in D, and the tree in the pair
with higher depth (say Tj(·)) is removed. This is on ac-
count of time complexity in prediction through a tree
being proportional to its depth (Moshkov & Mikhail,
2005).

However, removal of a tree from the RF modifies the
nature of its decision boundary, and thus to preserve

the constraint in (3) we introduce the following bias
compensation∑

∀Tn 6=Ti,Tj

pTn
(ωk|x) + pTi

(ωk|x) + pTj
(ωk|x)

'
∑

∀Tn 6=Ti,Tj

pTn
(ωk|x) + 2pTi

(ωk|x)
(7)

where the left sided term is H(ωk|x; {Q}train, N) and
the right sided term is HLRF (ωk|x; {Q}train, N → N−
1) as per (3), and HLRF (·) consists of N − 1 number
of trees.

The process is subsequently repeated by recomput-
ing the matrix D on this LRF for the remaining
(N − M − 1) number of times. Since computing D
is an exhaustive process, the stage can be avoided by
removing the rows and column in D corresponding to
the entry Tj to obtain a (N−1)×(N−1) sized matrix
and repeat the search process to the next redundant
pair to be removed. The posteriori of a LRF can hence
be represented by modifying (1) as

p(ωk|x) =

N∑
i=1

p(Ti)pTi(ωk|x) (8)

where p(Ti) is the priori of each tree to a decision
making, s.t. in a RF with N trees, p(Ti) = 1

N as
in (1) and in the LRF, p(Ti) = wi

N where wi is the
redundancy number of Ti, which is computed as the
number of trees {Tj}∀i 6= j in the original RF in H(·)
which were similar to Ti in HLRF (·).

4. Experimental Results - Discussions

We experimentally demonstrate the potential of LRF
through CD using the following three classification
datasets: (i) synthetic dataset and (ii) skin segmen-
tation dataset, (iii) ADL dataset from the UCI ML
repository1. The synthetic dataset was self generated.
We randomly select 50% of the samples for training N
trees of a RF and 25% for discovering the LRF with M
number of trees, from each of these datasets. Remain-
ing 25% of data is used for validating our proposed
method. We construct the posteriori as P(Ti) in (5)
for each tree Ti in the RF H(·) by uniformly shattering

the dynamic range [x
(d)
min, x

(d)
max] of feature x(d) into 100

discrete steps over all x(d) ∈ x.

The RF in our experiment consisted of N = 100 num-
ber of trees. Bootstrap factor for Qi ∈ {Q}train is
chosen to be 2%. As a stopping criteria of growth for
each tree we set minLeaf = 10. The testing time of

1https://archive.ics.uci.edu/ml/datasets.html
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Table 1. Comparison of the time complexity of RF before
and after landscaping for different datasets.

Dataset RF (sec.) LRF (sec.) ∆ time

Synthetic 1.2814 ± 0.27 0.8748 ± 0.18 −32%
Skin 5.0184 ± 0.02 1.2237 ± 0.02 −76%
ADL 1.3526 ± 0.03 0.6212 ± 0.02 −54%

Table 2. Comparison of average classification error of RF
before and after landscaping for different datasets.

Dataset RF LRF

Synthetic 0.0582 ± 0.07 0.0585 ± 0.07
Skin 0.0137 ± 0.09 0.0128 ± 0.08
ADL 0.2533 ± 0.09 0.2549 ± 0.17

the RF and LRF were computed for three different
datasets across 15 runs of independent experiments
and is reported in Table 1. The performance of the
RF and LRF were computed in terms of percentage of
error in decision making and reported in Table 2.

Close observation of the Fig. 2 where error vs. num-
ber of removed trees is presented, shows that initially
the error is constant even after removal of significant
number of trees. This corresponds to the deletion of
redundant trees. The execution speedup is propor-
tional to the number of redundant trees that can be
removed in the due process. In Table 1 we can observe
a 32 − 76% reduction in time complexity of the LRF
compared to the RF for other datasets.

Figure 2. Illustration of the change in performance error as
the trees are removed systematically for LRF through CD.

5. Conclusion

In this paper, we have proposed a method for re-
ducing the computational complexity of RF during

deployment through a post training refinement
(landscaping) framework. The main features of
this presented framework are (i) notable increase in
execution speed and (ii) performance retention of the
LRF after CD. This is done by proper identification
of redundant trees which are highly correlated with
others and selective removal in the forest followed
with bias compensation. This increases the speed
while preserving the functionality of the learned
framework. We experimentally verified our claims for
three different datasets which substantiates our claims
with exhibiting speedup with 32 − 76% reduction in
execution time of the LRF while preserving overall
classification performance.

Dual Submission

This paper has been accepted at the 22nd National
Conference on Communications, 2016, IIT Guwahati,
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