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Abstract

Classification of fiber tracts is an important
problem in brain tractography.We propose a
supervised algorithm which learns features
for anatomically meaningful fiber clusters,
from labeled DTI white matter data. The
classification is performed at two levels: a)
Grey vs White matter (macro level) and b)
White matter clusters (micro level). Our ap-
proach focuses on high curvature points in
the fiber tracts, which embodies the unique
characteristics of each class. A test fiber is
classified into one of these learned classes
by comparing proximity using the learned
curvature-point model (for micro level) and
with a Neural Network classifier (at macro
level). The proposed algorithm is validated
over brain DTI data for three subjects con-
taining about 2,50,000 fibers per subject, and
has been shown to yield high classification ac-
curacy at both macro and micro levels.

1. Introduction

Communication between different sub-divisions of
brain is carried out via neuronal connections known
as fibers, consisting of dendrites and axons. The brain
tissue is divided into 2 primary types - white matter
and grey matter. The former mainly contains axons
that connect different parts of grey matter, while the
latter contains cell bodies, dendrites and axons.

In the white matter space, many fibers form a bundle
or cluster called Neural tracts; pathways that connect
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different parts of the brain, typically divided into 8 ma-
jor classes: Arcute, Cingulum, Corticospinal, Forceps
Major, Fornix, Inferior Occipitofrontal Fasciculus, Su-
perior Longitudinal Fasciculus and Uncinate.

Diffusion Tensor Imaging (DTI) is non-invasive MR
technique that enables one to determine the fiber
tracts in the brain. The process, know as ”Tractog-
raphy”, visualizes the fiber structure in 3D image ob-
tained using DTI. An example is shown in Figure 1.

The segregation of these fibers into different anatomi-
cally significant bundles provides a better understand-
ing of the brain structure and more insight into differ-
ent neural disorders. However, a manual segmentation
process is too ambitious a task, owing to enormity of
the data (with a few hundred-thousand fiber tracts
per subject). Hence, automatic classification of fibers
into different bundles (groups) is an important but a
challenging problem.

We propose an approach that uses labeled white mat-
ter DTI data to automatically learn features for differ-
ent anatomically meaningful fiber clusters of brain’s
white matter. The features involve high-curvature
points on the trajectory of each fiber, to learn the in-
dividual model for each class of the 8 primary classes.
Furthermore, at a macro level, a model is trained to
classify the data into 2 groups: one containing a group
of 8 white matter tracts and one containing fibers not
belonging to any of them. Any test fiber is classified
into one of the classes by comparing a proximity based
on the learned high-curvature-point based model.

[1.1] Related Work: While the problem of identify-
ing the fiber tract clusters is relatively recent, some
approaches have been reported. In some unsuper-
vised approaches (Catani et al., 2002) (Maddah et al.,
2005) (Wakana et al., 2004), regions of interests (ROI)
are chosen manually, and fibers are grouped based
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Figure 1. DTI fibers tracts: Unclassified (left), Grey mat-
ter (top right), White matter tracts (bottom right).

on these. Unlike these, in our approach the ROI are
found out automatically, from labeled data. Donnell
and Westin (O’Donnell & Westin, 2007) used spectral
clustering to generate a white matter atlas automat-
ically. The similarity is calculated between fibers us-
ing Hausdorff distance, and the clustering is employed
in embedded space, formed using the Eigen-vectors of
the distance matrix. In (Wang et al., 2011) hierarchi-
cal Dirichlet process is used to determine the number
of clusters. In (Nikulin & McLachlan, 2010), certain
points are selected automatically for representing each
class. Instead of selecting many points our algorithm
chooses only those points that have high curvature.

2. Proposed Solution

In this section, we discuss in detail various components
of our approach such as fiber trajectory representation,
feature extraction, clustering etc.

[2.1] Curvature Points : A good representation of
the underlying data is important for building a model.
We propose that high curvature points of the fiber tra-
jectory can serve as unique characteristics to represent
the fiber trajectories. Fibers will have high curvature
value around regions where they significantly change
direction. These regions would be similar for all the
fibers in same cluster. Thus, we build our model using
the fiber curvature at high curvature points.

The input to our approach is an array of fibers where
the size of the array will be equal to number of fibers,
and each fiber consists of 3D points. The number of
points varies from fiber to fiber. fij represents a point

Figure 2. Circumradius fit for triplet of points

Figure 3. Voxel grid

with co-ordinate < x, y, z > that is jth point of ith

fiber.

To get the point having high curvature with good ap-
proximation we use the circum-radius viz. a unique
circle fitted for every triplet of consecutive points in
the fiber. as shown in Fig. 2. The points which
would have high circum-radius would have less cur-
vature and hence are less interesting. On the other
hand, the points that have small radius would amount
to a larger change in path of the curve.

[2.2] Space Discretization: We wish to compare
fibers using the points that have high curvature. But
as a large number of fibers are considered, the curva-
ture data is often noisy (due to non-uniform distance
between the fiber points), which makes it difficult to
approximate regions that best characterizes the curve.
Hence, to overcome this problem we work on a voxel
grid, which is constructed as follows: Let the minimum
and maximum values are computed for each 3D point
coordinate x,y and z.

xc
min = min

i,j

⌊
f c

ij(x)
⌋

xc
max = max

i,j

⌈
f c

ij(x)
⌉

(1)

Where f c is set of fibers belonging to class c. Hence,
a grid of size (xc

max−xc
min)× (yc

max−yc
min)× (zc

max−
zc
min) is formed and is divided into voxels of size xd ×

yd × zd for each class c. An example of the voxel grid
is shown in Figure 3.
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Each point belonging to the fiber of class c is then
approximated to the nearest grid point. A 3D ar-
ray bGridc(i, j, k) is constructed for each grid point,
which stores the number of points approximated at
< x, y, z > for class c. A similar 3D array bV alc(i, j, k)
stores the sum of the circum-radius of all points ap-
proximated at < x, y, z >. The relation between
< x, y, z > and < i, j, k > is

< i, j, k >=< x−xmin +1, y−ymin +1, z−zmin +1 >
(2)

Now, only those grid points that have higher frequency
of such 3D points than the predefined threshold are
selected. Grid points that have less frequency can be
considered noisy and are discarded. The points we
get after this step are far less than the original set
because multiple points would overlap to a grid-point
and only fraction of these grid-points are chosen. This
step helps in improving the computational efficiency
and noise reduction.

[2.3] Clustering: The array bV alc(i, j, k) will have
the sum of curvature values of all the points approxi-
mated at that grid point. Hence, the average value of
curvatures in a voxel, is obtained by

bAvgc(i, j, k) = bV alc(i, j, k)/bGridc(i, j, k) (3)

Now 30% points are chosen that have least
bAvgc(i, j, k) value, which would correspond to those
with highest curvature value of the accumulated fibers.
These points would be distributed in different regions.
We cluster them to get a single mean for each region.
Each class will now have different number of regions
and hence different number of clusters. The latter is
determined empirically for each class. Fig. 4, depicts
an example of the above discussed sequential catego-
rization of fiber points for a class.

[2.4] Feature Extraction and Classification: We
compute eight distance features which represent the
proximity between classes. We want to capture the
information about relative position of the fibers of each
class . For example, for fibers of class 4, which has
some relative positions to all 1 − 8 class centers, we
would expect the distance of class 4 fibers and those
in other classes to have some pattern.

After the previous step, we have cluster centers for
each class. For classification of new fiber, we calculate
the circum-radius values and choose top 30% high cur-
vature points. Let this set be S. These points should
be closer to the centers of the correct class than other
classes. So for each i in S, a distance,

Dist(i, j) = max
∀k
N (Pi; mean arrck, Σ) ∀i ∈ S (4)

Figure 4. An example of the sequential categorization of
fiber points: Green points remain after the elimination
based on the frequency of points in each voxel, yellow
points are those with high curvature value, and red points
are the cluster means after clustering.

Figure 5. Overview of our approach.

is calculated. Where mean arrjk is kth center of jth

class. N is normal distribution with mean mean arrck

and co-variance diagonal matrix Σ with diagonal val-
ues 20. Essentially for all points of fiber, Dist(i, j)
gives nearest center of class c.

For the macro level classification, we compute the
above distance for all training fibers, and define

f(c) =
∑
i∈S

Dist(i, c) (5)

which is the total sum of the nearest center of each
point in fiber to class c. These f(c) values then fed to
a neural network for classification.

For the micro-level classification, the distance in equa-
tion (5) is directly used for test fibers, and the class
label yielding the minimum distance is assigned to the
fiber. The various blocks in our overall approach are
depicted in Figure 5.
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Macro

Intra
Brain-1 98.02%
Brain-2 96.14%
Brain-3 96.69%

Inter (using brain1 as training) Brain-2 91.32%
Brain-3 94.03%

Mixed - 94.87%
Micro

Intra
Brain-1 97.34%
Brain-2 93.49%
Brain-3 95.96%

Inter (using brain1 as training) Brain-2 88.05%
Brain-3 93.66%

Mixed - 93.95%

Table 1. Results of the proposed approach for three exper-
imental strategies, and two levels.

3. Experimental Analysis

We validate our approach on the DTI data for 3 pa-
tients. Each patient data consists about 2,50,000
fibers. The average length across different fiber classes
varies between 36 to 120, highlighting that our ap-
proach is insensitive to the fiber length.

The experiments are carried out at two levels of classi-
fication - 1) Macro-level: Done between white-matter
(classes 1− 8 considered as one) and grey-matter. At
this level, we employ a neural network with 1 hidden
layer and 8 hidden nodes for classification. 2) Micro-
level: At this level, classification is performed among
classes 1 to 8.

[3.1] Testing Strategy: Three strategies have been
adopted to compute the accuracy of our algorithm. 1)
Intra-Brain: Training and Testing data will be taken
from same brain. 2) Inter-Brain: One complete brain
data is taken for training and the approach is tested
against data from other brains. 3) Mix-Model: 50%
data from 3 brains to train, and the other 50% data
from 3 brains to test. We compute the classification
accuracy as,

Accuracy =
Correctly classified fibers

Total No. of fibers
(6)

[3.2] Experiments: In table 1 we show our results
and discuss these below.

i.) Intra-Brain: This model is trained and tested with
sets of 50% data from the same brain. As expected,
this strategy yields best results among all. Such an ex-
periment highlights the reduction in manual labeling,
even if it is for the same brain data.

ii.) Inter-Brain: We used complete brain 1 for train-

ing and test the model on brain 2 and brain 3. This
strategy leads to somewhat less classification. This is
because many white matter fibers are classified as grey
matter at the macro level. However, the micro-level
accuracy is still quite high.

iii.) Mix-Model: To account for variability among dif-
ferent brains, we use sets of 50% from all 3 brains to
train and test. As the data varibility is high, the ac-
curacy is lower than the first case. However, it still
maintains a healthy accuracy of above 93%.

4. Conclusion

In this work, we reported an approach for classification
of fiber tracts in DTI brain data. Our approach ex-
ploits a representation based on high-curvature points
on fiber tracts, and their clustering. We perform clas-
sification on the macro and micro levels, and show a
high classification accuracy across three experimental
strategies. This highlights the efficacy of our approach
under variability in data.
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