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Abstract

We propose a Bayesian non-parametric
model to induce Tree Adjoining Gram-
mars(TAGs) from natural language based on
(Cohn et al., 2010). Tree Adjoining Gram-
mars belong to the family of Mildly Context
Sensitive Grammar formalisms(MCSGs) that
are rich enough to capture the underlying in-
tricacies of the language. To the best of our
knowledge, this is the first work that uses
an MCSG formalism coupled with a Bayesian
nonparametric model.

1. Introduction

Inducing grammar from natural language, even though
extremely challenging, is an active area of research
in computational linguistics. Context Free Gram-
mars(CFG) and Probabilistic CFGs (PCFG) are used
in the literature for decades due to their simplicity.
But a natural language like English is known to be
strictly in the class of Context Sensitive Languages
(CSLs) which are hard to learn due to their complexity.
Thus there is a trade off between learnablity and com-
plexity of the grammar formalism. In an attempt to
address this tradeoff (Joshi & Schabes, 1997) proposed
Tree Adjoining Grammars(TAGs). TAG belongs to a
class of languages called Mildly Context Sensitive Lan-
guages (MCSL). TAGs consists of set of inital trees
and auxiliary trees. Even though MCSL formalisms
like TAG are less complex than CSLs, learning TAG
from the natural language is highly challenging, since
in TAG induction we need to induce the structure of
elementary trees from the data set. One solution to
find the balance between learnability and complexity
is to use a rich grammar formalism with a nonpara-
metric Bayesian prior to limit the model complexity
(Cohn et al., 2010). The advantage of using nonpara-
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metric Bayesian prior is that they provide us infinitely
many parameters that increases the complexity of the
model, provided there is sufficient data. In this paper,
we propose a model that uses Tree Adjoining Gram-
mars as the grammar representation, along with a non-
parametric Bayesian prior. The experimental results
reported shows that this results in the increase in ac-
curacy of parsing.

2. Proposed Model

Probabilistic Tree Adjoining Grammars (PTAGs), as-
signs a probability to each rule in the grammar, de-
noted by P (e|c), where the elementary tree e rewrites
the non-terminal c. In this case, e can be either an ini-
tial tree or an auxiliary tree. Similar to (Cohn et al.,
2010), instead of inferring the grammar from the tree-
bank directly, we infer a distribution over the deriva-
tion used to produce the tree. Then we can read the
grammar off the elementary trees. This reduces the
problem to inferring posterior distribution of e given
w.

The probability of a derivation e ( denoted by P (e)
) is the product of the probabilities of its component
rules.

P (e) =
∏

c→e∈(I∪A)

P (e|c)

where e = (e1, e2...) is a sequence of initial/auxiliary
trees used for the derivation and c = root(e) is the
root symbol of e and c → e means we replace node c
with the elementary tree e. We assume that e is condi-
tionally independent of the remaining part of the tree
given the root c. We do not know how many initial
trees and auxiliary trees are needed to account for the
data. So as mentioned earlier, we use Bayesian non-
parametric priors that support an infinite distribution
over all possible initial and auxiliary trees. We use
Pitman-Yor process (PYP), which is a generalization
of the Dirichlet Process (DP). For each non-terminal c,
we have two PYPs, one process that generates initial
trees rooted with c and another process that generates
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auxiliary trees rooted with c. Once we have two such
distributions, we can decouple the decision about the
kind of tree to be used in the derivation from the selec-
tion of tree. Assuming we have the base distribution
from which we can sample new elementary trees, the
derivation e = e1, e2, .., en can be defined as follows.

Gcx |acx , bcx , PEx
∼ PY P (acx , bcx , PEx

(.|c))

eix |c,Gcx ∼ Gcx

where x ∈ {in,au}. x = in denotes that the process
generates initial trees and x = au denotes that the
process generates auxiliary trees. For example Gcin

is the distribution over all initial trees with root non-
terminal c. G is an infinite distribution over possible
elementary trees drawn from the PYP prior. Even
though ei are drawn i.i.d from G, we integrate over
possible values ofG to introduce dependencies between
the ei. This can be better understood by the variant of
Chinese Restaurant Process (CRP) called Pitman-Yor
CRP(PYCRP) defined in (Cohn et al., 2010).

PYCRP consists of a restaurant with countably in-
finite number of tables, each with countably infinite
number of seats. Customers enter the system one at
a time and select a table to sit. If zi is the index of
the table chosen by the ith customer, then PYCRP
defines the following distribution.

P (Zi = k|z
i
) =

{
n−k −a
i−1+b 1 ≤ k ≤ K−
K−a+b
i−1+b k = K− + 1

where z
i

is the seating arrangement of the previous
i - 1 customers, n−k is the number of customers in z

i

who are seated in table k and K− is the total number
of tables in z i . First customer sits at first table with
probability 1 (i.e z1 = 1). The joint probability of the
sequence of integers produced by PYCRP is given by,

P (z) = Γ(1+b)
Γ(n+b

(
K−1∏
k=1

(ka+ b)

)(
K∏

k=1

Γ(n−k −a)

1−a

)
where K is the total number of tables in Z and Γ is the
gamma function.

Consider a PYCRP that generates initial trees with
some non-terminal c as its root. Each table i in
the system is labeled with an initial tree with l(z)
= l1l2...lk. Whenever a new customer opens up a
new table, label for that table is chosen from the
base distribution PEin

which is conditioned on c.
Let ei be the label of ith customer, i.e., ei = lzi . Then,

P (ei = e|c, z i , l(z i)) =
n−e −K

−
e ac+(K−c ac+bc)PE(e|c)

n−c +bc

where K−c is the total number of tables for non-

terminal c, n−e is the number of times e has been used
to rewrite c and n−c is the total count of the rules
rewriting c. Note that the same discussion is applica-
ble for the PYCRPs that generate auxiliary trees too.
Given a fixed distribution Pc(α|c′) (probablity of rule
c′ → α, where c′ is some non-terminal) of the CFG
rules, the base distributions for initial trees is,

PEin(e|c) =
∏

i∈I(e)
(1− sci)

∏
f∈F (e)

scf
∏

c′→α∈e
Pc(α|c′)

where I(e) is the set of internal nodes in e excluding
the root, F (e) is the set of frontier non-terminal nodes
and sc is the probability of stopping the expansion at
a node .

3. Experimetal Results

We conducted experiments on Wall Street Jour-
nal(WSJ) corpus of the Penn Treebank . We used
sections 2-21 for larger training set 23 for testing and 2
as smaller training set. We ran the sampler for 10,000
iterations. We initially trained the model with the
smaller training test and tested the model with the test
data. Then we trained the model with the larger train-
ing set. The results are compared with parsers based
on MAP PCFG and TSG (Cohn et al., 2010) . The F1
values are reported in Table 1. It clearly shows that
this model performs better than (Cohn et al., 2010).

Models Small Training Set Large training set
PCFG 60.3 63.5
TSG 74.6 84.4
TAG 79.4 89.9

Table 1. F1 measure for the parsers (both using small
training set and large training set)

4. Conclusion

In this paper, we have proposed a Bayesian non-
parametric model to induce Probabilistic Tree Ad-
joining Grammars from the collection of parse trees.
Experimental results shows that parsers that use the
induced PTAGs perform better than state of the art
parsers that uses PCFGs and TSGs.
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