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Abstract

The area under the ROC curve (AUC) is
a popular performance measure in machine
learning. In an increasing number of appli-
cations, however, performance is measured
in terms of the partial area under the ROC
curve between two given false positive rates.
In this work, we develop two SVM based
methods for directly optimizing this partial
AUC; the first method is a general structural
SVM approach, while the second method uses
an improved SVM formulation that optimizes
a tighter convex upper bound on the partial
AUC risk. We demonstrate the effectiveness
of our methods on several biological data sets.

1. Introduction

The receiver operating characteristic (ROC) curve is
an important evaluation tool in machine learning. In
particular, the area under the ROC curve (AUC) is
used to summarize the performance of a scoring func-
tion in binary classification, and is also used as a per-
formance measure in bipartite ranking problems. In an
increasing number of applications, however, the per-
formance measure of interest is not the area under the
full ROC curve, but instead, the partial area under the
ROC curve between two specified false positive rates
(see Figure 1). For example, in ranking applications
where accuracy at the top is critical, one is often inter-
ested in the left-most part of the ROC curve; this cor-
responds to maximizing partial AUC in a false positive
range [0, β]. In biometric screening, where false posi-
tives are intolerable, one is again interested in maxi-
mizing the partial AUC in a false positive range [0, β]
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Figure 1. Partial AUC in the false positive range [α, β].

for some small β. In the KDD Cup 2008 challenge on
breast cancer detection, performance was measured in
terms of the partial AUC in a false positive range [α, β]
deemed clinically relevant (Rao et al., 2008).

In this paper, we develop new support vector algo-
rithms for directly optimizing the partial AUC be-
tween any two given false positive rates α and β. As a
first cut, we develop a structural SVM based method
for optimizing partial AUC; building on this, we pro-
pose an improved SVM formulation that optimizes a
tighter convex upper bound on the partial AUC risk
and has better run time guarantees. Both our algo-
rithms make use of a cutting plane solver along the
lines of the structural SVM based approach for opti-
mizing the full AUC developed by (Joachims, 2005);
one of our key technical contributions here is an effi-
cient algorithm for solving the combinatorial optimiza-
tion problem needed to find the most violated con-
straint in the cutting plane solver. We also develop an
alternate primal projected subgradient solver, which
offers computational savings in certain settings. We
demonstrate on a wide variety of bioinformatics tasks
that the proposed algorithms do indeed optimize par-
tial AUC and in many cases, perform better than exist-
ing baseline techniques. In addition, we develop exten-
sions of our method to learn sparse and group sparse
models, often of interest in biological applications.

The paper is organized as follows. We describe our
problem setup in Section 2, followed by brief descrip-
tions of our new SVM algorithms in Sections 3 and 4
and highlight some experimental results in Section 5.
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2. Problem Setup

Let X be an instance space. Given a training sample
of positive examples (x+

1 , . . . , x
+
m) ∈ Xm and negative

examples (x−

1 , . . . , x
−

n ) ∈ Xn, the goal is to learn a
scoring function f : X→R that maximizes the empiri-
cal partial AUC (pAUC) in a false positive range [α, β],
or equivalently minimizes the following risk:

R̂(f) =

m∑

i=1

jβ∑

j=jα+1

1
(
f(x+

i ) < f(x−

(j)f
)
)
, (1)

where jα = ⌈nα⌉, jβ = ⌊nβ⌋, and x−

(j) denotes

the negative instance ranked in j-th position (among
negatives, in descending order of scores) by f ; see
(Narasimhan & Agarwal, 2013a) for a more general
definition. We next outline two new SVM based meth-
ods for (approximately) optimizing the above risk.

3. SVMstruct
pAUC: A Structural SVM

Approach for Optimizing pAUC

Our first algorithm is a general structural SVM
based method along the lines of Joachims’ structural
SVM based approach for optimizing the full AUC
(Joachims, 2005); our method essentially minimizes a
(convex) hinge relaxation of Eq. (1), where the result-
ing quadratic program is solved using a cutting plane
method. Each iteration of the cutting plane method
involves a combinatorial search over an exponential
number of orderings of the positive vs. negative train-
ing instances – with each ordering represented as a
binary matrix – to find the currently most violated
constraint. In the case of the full AUC, this combi-
natorial optimization problem decomposes neatly into
one in which each matrix entry can be chosen indepen-
dently (Joachims, 2005). Unfortunately, for the par-
tial AUC, such a straightforward decomposition is no
longer possible; instead, we formulate an equivalent
optimization problem with a restricted search space,
which can then be broken down into smaller tractable
optimization problems. Following this reformulation,
each row of the matrix can be optimized separately –
and efficiently; the resulting algorithm has the same
computational complexity as in the case of Joachims’
algorithm for optimizing the usual AUC.

4. SVM
tight
pAUC: SVM Formulation with a

Tighter Convex Upper Bound

Building on our first algorithm, we develop a new
support vector method, SVMtight

pAUC, that optimizes a
tighter convex upper bound on the partial AUC risk,
which leads to both improved accuracy and reduced

computational complexity. In particular, by rewrit-
ing the partial AUC risk as a maximum of a certain
quantity over subsets of negative instances, we derive a
new formulation, where a truncated form of the earlier
optimization objective is evaluated on each of these
subsets, leading to a tighter hinge relaxation on the
partial AUC risk. As with SVMstruct

pAUC, the resulting op-
timization problem can be solved using a cutting plane
algorithm, but the new method requires smaller com-
putation time for finding the most-violated constraint
and was observed to converge faster. We also develop
an alternate primal projected subgradient solver for
SVMtight

pAUC, which offers additional computational sav-
ings in certain settings; this in turn allows us to extend
our method to learn sparse and group sparse models
by incorporating different sparsity inducing regulariz-
ers in the projection step of the solver.

5. Experimental Results

We evaluated our methods on a variety of bioinfor-
matics tasks, ranging from protein-protein interaction
prediction (PPI) to cancer diagnosis (see Table 1).
In most cases, the proposed methods gave improve-
ments in partial AUC over existing methods; between
SVMstruct

pAUC and SVMtight
pAUC, the latter performed better.

SVMtight

pAUC
[0, 0.1] SVMstruct

pAUC[0, 0.1] SVMAUC

PPI 52.95 51.96 39.72
Cheminformatics 65.30 65.28 62.78
KDD Cup 2001 69.91 70.12 62.23
Leukemia 30.44 24.64 28.83

Table 1. Partial AUC in [0, 0.1] for the two proposed sup-
port vector methods and the AUC optimizing method due
to (Joachims, 2005) on different bioinformatics data sets.

6. Conclusions

We have outlined two support vector algorithms for
optimizing the partial AUC, a performance measure of
interest in several real-world applications. Experimen-
tal results confirm the effectiveness of our methods.
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