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Abstract

Shared Nearest Neighbor Density-based
(SNN-DBSCAN) clustering is a robust
graph-based clustering algorithm and has
wide applications from climate data analy-
sis to network intrusion detection. We pro-
pose an incremental extension to this algo-
rithm IncSNN-DBSCAN capable of finding
clusters on a dataset to which frequent in-
serts are made. Computations are done only
on those data points which undergo one of the
three types of changes in properties that we
have identified. IncSNN-DBSCAN achieves
speed-up up to 360 times by avoiding redun-
dant computations, while generating exact
same clustering as the non-incremental algo-
rithm. We experimentally verify our claim on
a dataset with 1000 records upon which we
make up to 5000 inserts.

1. Introduction

Cluster analysis organizes similar points in the data
into groups called clusters. Popular clustering algo-
rithms use the stationary nature of data to find a
globally optimal solution. When changes are made
to the dataset, these algorithms have to be run on the
entire dataset to update possible changes in cluster-
ing, involving significant redundant computations. We
specifically tackle this problem by restricting redun-
dant computations and deliver a clustering identical
to the original clustering. The speed-up gained will
have tremendous impact in scenarios where changes
to dataset are rather frequent like network intrusion
detection or web-crawling.
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2. Incremental Clustering

Definition 1: Given a data set A, along with its initial
clustering f : A → N and an update sequence of n
data points. After k ≤ n updates let A′ be the new
data set, then an incremental clustering is defined as
a mapping g : f,A′ → N isomorphic to the one-time
clustering f(A′) by the non-incremental algorithm.

Output of online clustering algorithm can change de-
pending on the order of insertions. However, incremen-
tal clustering requires algorithms to produce output
which is independent of insertion order. Just like In-
cDBSCAN (Ester et al., 1998), our algorithm is order-
independent.

3. Shared Nearest Neighbor Similarity

3.1. SNN-DBSCAN

Beyond direct similarity between points, similarity in
surroundings of points is used as a more robust sim-
ilarity measure - Shared Nearest Neighbor simi-
larity. Two points are called shared nearest neighbors
(SNN) if they are present in each others nearest neigh-
bor lists (NN-list). If two SNNs p1 and p2, have more
common neighbors in their NN-lists then shared link
p1 ↔ p2 also strengthens. We chose an approach in
(Ertöz et al., 2003), to measure shared link strengths,
which is, the sum of the product of the ranks assigned
by p1 and p2 to their common neighbors.
Two points p and q are said to have SNN connection,
if they have a shared link with strength above a thresh-
old called merge threshold and at least one of the
points is a topic point. A point is a topic if its total
connection strength (TCS) is greater than or equal
to a threshold topic t. TCS is the number of strong
links incident on a point. Strong links are shared links
with strength above another threshold called strong
threshold, where strong threshold≥merge threshold.
SNN reachability exists between two points p and
q if we can find a sequence of SNN connected points
starting from p to q (or vice-versa). SNN reachability
is symmetric and transitive. A cluster is maximal set
of pairwise SNN reachable points.
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3.2. Incremental SNN-DBSCAN

Due to an insertion three types of changes can be ob-
served (please refer Figure 1) (p→ q means q is in p′s
NN-list, p↔ q means p, q have shared link)
1. (Type I) Changes in NN-list, shared link strengths,
total connection strength and topic property.
2. (Type II) Changes in shared link strengths, total
connection strength and topic property.
3. (Type III) Changes only in cluster membership.
Nodes not SNN-reachable from any of the affected
points would not be involved in any computation,
restricting redundancy. First, the inserted point
new pt’s NN-list is constructed by scanning all other
points in the data set. Existing data points compete
to appear in NN-list of new pt and vice versa. Points
that accept new pt into their NN-list fall in Type I.
Such points have to delete one of the older members
from their NN-list and degrade rank of others who rank
below new pt. This changes shared links, total connec-
tion strength and topic property of Type I points. NN-
lists of non-Type I neighbors of Type I points is not
changed by new pt. However, the rank of non-Type I
points could be degraded in NN-list of Type I points.
This might result in weakening of shared link strengths
between a Type I point and its Type II neighbors. As
a result, total connection strength and topic property
of Type II points will also change.
Non-Type I and non-Type II neighbors of Type II
points are labeled as Type III points. For all Type
III points, NN-list and shared links are unchanged.
However, a Type II neighbor of a Type III point can
change from a topic to a non-topic point. As a result,
an earlier SNN connection between them could be lost.
This opens up possibility of splitting the existing clus-
ter that contains these points.
After sequentially updating the properties for new pt,
Type I , Type II and Type III points and marking
all SNN-links to be removed, we perform merge and
split operations on the clusters. Merging involves
union of all clusters that are SNN connected through
new SNN-connections with new pt or Type I points.
Merging need not extend to Type II points or beyond
because Type II points can only degrade from a topic
to non-topic. A cluster split between two points is de-
cided by a simple SNN reachability test between them.

NN-list computed for each data point by our algorithm
is same as the non-incremental algorithm. Every other
property of data points and the final clustering is based
on NN-lists of all the data points. Therefore, output
of our algorithm is order-independent and matches the
non-incremental algorithm.
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Figure 1. Layers Involved in the Algorithm
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Figure 2. Performance vs Number of Inserts

3.3. Experiments and Results

Our experiments were performed on the Network In-
trusion Data from KDD Cup 1999. Filtering out
10,000 unique records with 41 attributes, we mea-
sured the speed-up and percentage rise in memory us-
age from 20 to 5000 inserts (please refer Figure 2).
Speed-up is defined as the ratio of time taken by SNN-
DBSCAN to the time taken by our algorithm. On
5000 inserts we got 360 times speed-up over the SNN-
DBSCAN algorithm which took 15 hours. However,
our algorithm requires 45 times more memory.
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